×

Stochastic disease spreading and containment policies under state-dependent probabilities. (English) Zbl 1536.92135

Summary: We analyze the role of disease containment policy in the form of treatment in a stochastic economic-epidemiological framework in which the probability of the occurrence of random shocks is state-dependent, namely it is related to the level of disease prevalence. Random shocks are associated with the diffusion of a new strain of the disease which affects both the number of infectives and the growth rate of infection, and the probability of such shocks realization may be either increasing or decreasing in the number of infectives. We determine the optimal policy and the steady state of such a stochastic framework, which is characterized by an invariant measure supported on strictly positive prevalence levels, suggesting that complete eradication is never a possible long run outcome where instead endemicity will prevail. Our results show that: (i) independently of the features of the state-dependent probabilities, treatment allows to shift leftward the support of the invariant measure; and (ii) the features of the state-dependent probabilities affect the shape and spread of the distribution of disease prevalence over its support, allowing for a steady state outcome characterized by a distribution alternatively highly concentrated over low prevalence levels or more spread out over a larger range of prevalence (possibly higher) levels.

MSC:

92D30 Epidemiology
91B70 Stochastic models in economics

References:

[1] Acemoglu, D.; Johnson, S., Disease and development: the effect of life expectancy on economic growth, J. Polit. Econ., 115, 925-985 (2007) · doi:10.1086/529000
[2] Acemoglu, D.; Chernozhukov, V.; Werning, I.; Whinston, MD, A multi-risk SIR model with optimally targeted lockdown, Am. Econ. Rev. Insights, 3, 487-502 (2021) · doi:10.1257/aeri.20200590
[3] Adda, J., Economic activity and the spread of viral diseases: evidence from high frequency data, Quart. J. Econ., 131, 891-941 (2016) · doi:10.1093/qje/qjw005
[4] Alvarez, FE; Argente, D.; Lippi, F., A simple planning problem for COVID-19 lockdown, Am. Econ. Rev. Insights, 3, 367-382 (2021) · doi:10.1257/aeri.20200201
[5] Anderson, ST; Laxminarayan, R.; Salant, SW, Diversify or focus? Spending to combat infectious diseases when budgets are tight, J. Health Econ., 31, 658-675 (2010) · doi:10.1016/j.jhealeco.2012.05.001
[6] Bárány, B., On iterated function systems with place-dependent probabilities, Proc. Am. Math. Soc., 143, 419-432 (2015) · Zbl 1308.60044 · doi:10.1090/S0002-9939-2014-12193-9
[7] Barnsley, MF; Demko, S., Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond. Ser. A, 399, 253-275 (1985) · Zbl 0588.28002
[8] Barnsley, M.F., Demko, S., Elton, J., Geronimo, J.: Invariant measures for Markov processes arising from iterated function systems with state-dependent probabilities, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 24, 367-394. Erratum 1990(25), 589-590 (1988)
[9] Bloom, DE; Kuhn, M.; Prettner, K., Modern infectious diseases: macroeconomic impacts and policy responses, J. Econ. Lit., 60, 85-131 (2022) · doi:10.1257/jel.20201642
[10] Boucekkine, R.; Desbordes, R.; Latzer, H., How do epidemics induce behavioral changes?, J. Econ. Growth, 14, 233-264 (2009) · Zbl 1194.91125 · doi:10.1007/s10887-009-9042-1
[11] Carpentier, P.; Chancelier, JP; Cohen, G.; de Lara, M.; Girardeau, P., Dynamic consistency for stochastic optimal control problems, Ann. Oper. Res., 200, 247-263 (2012) · Zbl 1255.90124 · doi:10.1007/s10479-011-1027-8
[12] Chakraborty, S.; Papageorgiou, C.; Perez Sebastian, F., Diseases, infection dynamics, and development, J. Monet. Econ., 57, 859-872 (2010) · doi:10.1016/j.jmoneco.2010.08.004
[13] Eichenbaum, M.; Rebelo, S.; Trabandt, M., The macroeconomics of epidemics, Rev. Financ. Stud., 34, 5149-5187 (2021) · doi:10.1093/rfs/hhab040
[14] Elton, J., An ergodic theorem for iterated maps, Ergodic Theory Dyn. Syst., 7, 481-488 (1987) · Zbl 0621.60039 · doi:10.1017/S0143385700004168
[15] Fabbri, G.; Federico, S.; Fiaschi, D.; Gozzi, F., Mobility decisions, economic dynamics and epidemic, Econ. Theory (2023) · Zbl 1536.91219 · doi:10.1007/s00199-023-01485-1
[16] Federico, S.; Ferrari, G., Taming the spread of an epidemic by lockdown policies, J. Math. Econ., 93 (2021) · Zbl 1459.91090 · doi:10.1016/j.jmateco.2020.102453
[17] Federico, S.; Ferrari, G.; Torrente, ML, Optimal vaccination in a SIRS epidemic model, Econ. Theory (2022) · Zbl 1536.92063 · doi:10.1007/s00199-022-01475-9
[18] Gersovitz, M.; Hammer, JS, The economical control of infectious diseases, Econ. J., 114, 1-27 (2004) · doi:10.1046/j.0013-0133.2003.0174.x
[19] Goenka, A.; Liu, L., Infectious diseases and endogenous fluctuations, Econ. Theory, 50, 125-149 (2012) · Zbl 1258.91151 · doi:10.1007/s00199-010-0553-y
[20] Goenka, A.; Liu, L., Infectious diseases, human capital and economic growth, Econ. Theory, 70, 1-47 (2019) · Zbl 1458.91135 · doi:10.1007/s00199-019-01214-7
[21] Goenka, A.; Liu, L.; Nguyen, MH, Infectious diseases and economic growth, J. Math. Econ., 50, 34-53 (2014) · Zbl 1284.91370 · doi:10.1016/j.jmateco.2013.10.004
[22] Goldman, SM; Lightwood, J., Cost optimization in the SIS model of infectious disease with treatment, Top. Econ. Anal. Policy, 2, 4 (2002)
[23] Grassly, N.; Fraser, C., Seasonal infectious disease epidemiology, Proc. R. Soc. B, 273, 2541-2550 (2006) · doi:10.1098/rspb.2006.3604
[24] Hong, H.; Wang, N.; Yang, J., Implications of stochastic transmission rates for managing pandemic risks, Rev. Financ. Stud., 34, 5224-5265 (2021) · doi:10.1093/rfs/hhaa132
[25] Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[26] Jodar, L.; Villanueva, RJ; Arenas, A., Modeling the spread of seasonal epidemiological diseases: theory and applications, Math. Comput. Model., 48, 548-557 (2008) · Zbl 1145.92336 · doi:10.1016/j.mcm.2007.08.017
[27] Kunze, H.; La Torre, D.; Mendivil, F.; Vrscay, ER, Fractal-based Methods in Analysis (2012), New York: Springer, New York · Zbl 1237.28002 · doi:10.1007/978-1-4614-1891-7
[28] La Torre, D.; Marsiglio, S.; Mendivil, F.; Privileggi, F., A stochastic economic growth model with health capital and state-dependent probabilities, Chaos Solitons Fractals, 129, 81-93 (2019) · Zbl 1448.91174 · doi:10.1016/j.chaos.2019.08.010
[29] La Torre, D.; Malik, T.; Marsiglio, S., Optimal control of prevention and treatment in a basic macroeconomic-epidemiological model, Math. Soc. Sci., 108, 100-108 (2020) · Zbl 1461.92112 · doi:10.1016/j.mathsocsci.2020.03.005
[30] La Torre, D.; Liuzzi, D.; Marsiglio, S., Epidemics and macroeconomic outcomes: social distancing intensity and duration, J. Math. Econ., 93 (2021) · Zbl 1459.91091 · doi:10.1016/j.jmateco.2021.102473
[31] Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T., Murray, C.J.L.: Global burden of disease and risk factors (Oxford University Press: New York) basic reproduction number. Infect. Disease Model. 5, 129-141 (2006)
[32] Martcheva, M., An Introduction to Mathematical Epidemiology (2015), New York: Springer, New York · Zbl 1333.92006 · doi:10.1007/978-1-4899-7612-3
[33] McKee, M.; Stuckler, D., If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future, Nat. Med., 26, 640-642 (2020) · doi:10.1038/s41591-020-0863-y
[34] Meehan, MT; Cocks, DG; Trauer, JM; McBryde, ES, Coupled, multi-strain epidemic models of mutating pathogens, Math. Biosci., 296, 82-92 (2018) · Zbl 1380.92079 · doi:10.1016/j.mbs.2017.12.006
[35] Ming, R-X; Liu, J.; Cheung, WKW; Wan, X., Stochastic modelling of infectious diseases for heterogeneous populations, Infect. Dis. Poverty, 5, 107 (2016) · doi:10.1186/s40249-016-0199-5
[36] Mitra, T.; Privileggi, F., On Lipschitz continuity of the iterated function system in a stochastic optimal growth model, J. Math. Econ., 45, 185-198 (2009) · Zbl 1153.91658 · doi:10.1016/j.jmateco.2008.08.003
[37] Mitra, T.; Montrucchio, L.; Privileggi, F., The nature of the steady state in models of optimal growth under uncertainty, Econ. Theory, 23, 39-71 (2003) · Zbl 1175.91107 · doi:10.1007/s00199-002-0340-5
[38] Montrucchio, L.; Privileggi, F., Fractal steady states in stochastic optimal control models, Ann. Oper. Res., 88, 183-197 (1999) · Zbl 0939.93042 · doi:10.1023/A:1018978213041
[39] Ngai, S.; Wang, Y., Self-similar measures associated to IFS with non-uniform contraction ratios, Asian J. Math., 9, 227-244 (2005) · Zbl 1105.28006 · doi:10.4310/AJM.2005.v9.n2.a7
[40] Philipson, T.; Cuyler, AJ; Newhouse, JP, Economic epidemiology and infectious disease, Handbook of Health Economics, 1761-1799 (2000), Amsterdam: North Holland, Amsterdam
[41] Saglietti, S.; Shmerkin, P.; Solomyak, B., Absolute continuity of non-homogeneous self-similar measures, Adv. Math., 335, 60-110 (2018) · Zbl 1496.28004 · doi:10.1016/j.aim.2018.06.015
[42] Shevchenko, P.V., Murakami, D., Matsui, T., Myrvoll, T.A.: Impact of COVID-19 type events on the economy and climate under the stochastic DICE model. Environ. Econ. Policy Stud. (forthcoming) (2021)
[43] Shmerkin, P., On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal., 24, 946-958 (2014) · Zbl 1305.28012 · doi:10.1007/s00039-014-0285-4
[44] Stenflo, Ö.: Uniqueness of invariant measures for place-dependent random iteration of functions. In: Fractals in Multimedia, IMA Volumes in Mathematics and its Application book series, vol. 132, pp. 13-32 (2002) · Zbl 1053.28004
[45] Wang, Y.; Xu, C.; Yao, S.; Wang, L.; Zhao, Y.; Ren, J.; Li, Y., Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition, Sci. Rep., 11, 21413 (2021) · doi:10.1038/s41598-021-00948-6
[46] World Bank: Protecting people and economies: integrated policy responses to COVID-19 (International Bank for Reconstruction and Development : Washington). Available at: https://openknowledge.worldbank.org/bitstream/handle/10986/33770/Protecting-People-and-Economies-Integrated-Policy-Responses-to-COVID-19.pdf?sequence=7 &isAllowed=y (2020)
[47] Zakharov, V.; Balykina, Y.; Petrosian, O.; Gao, H., CBRR model for predicting the dynamics of the COVID-19 epidemic in real time, Mathematics, 8, 1727 (2020) · doi:10.3390/math8101727
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.