×

Free-boundary models of a meltwater conduit. (English) Zbl 1323.76019

Summary: We analyse the cross-sectional evolution of an englacial meltwater conduit that contracts due to inward creep of the surrounding ice and expands due to melting. Making use of theoretical methods from free-boundary problems in Stokes flow and Hele-Shaw squeeze flow we construct an exact solution to the coupled problem of external viscous creep and internal heating, in which we adopt a Newtonian approximation for ice flow and an idealized uniform heat source in the conduit. This problem provides an interesting variant on standard free-boundary problems, coupling different internal and external problems through the kinematic condition at the interface. The boundary in the exact solution takes the form of an ellipse that may contract or expand (depending on the magnitudes of effective pressure and heating rate) around fixed focal points. Linear stability analysis reveals that without the melting this solution is unstable to perturbations in the shape. Melting can stabilize the interface unless the aspect ratio is too small; in that case, instabilities grow largest at the thin ends of the ellipse. The predictions are corroborated with numerical solutions using boundary integral techniques. Finally, a number of extensions to the idealized model are considered, showing that a contracting circular conduit is unstable to all modes of perturbation if melting occurs at a uniform rate around the boundary, or if the ice is modelled as a shear-thinning fluid.{
©2014 American Institute of Physics}

MSC:

76D07 Stokes and related (Oseen, etc.) flows
35Q30 Navier-Stokes equations

References:

[1] Walder, J. S., Röthlisberger channel theory: Its origins and consequences, J. Glaciol., 56, 200, 1079-1086 (2010) · doi:10.3189/002214311796406031
[2] Glen, J., Experiments on the deformation of ice, J. Glaciol., 2, 111-114 (1952)
[3] Röthlisberger, H., Water pressure in intra- and subglacial channels, J. Glaciol., 11, 177-204 (1972)
[4] Schoof, C.; Hewitt, I. J., Ice-sheet dynamics, Annu. Rev. Fluid. Mech., 45, 217-239 (2013) · Zbl 1359.76319 · doi:10.1146/annurev-fluid-011212-140632
[5] Nye, J. F., The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment, Proc. R. Soc. London, Ser. A, 219, 477-489 (1953) · doi:10.1098/rspa.1953.0161
[6] Schoof, C., Ice-sheet acceleration driven by melt supply variability, Nature (London), 468, 803-806 (2010) · doi:10.1038/nature09618
[7] Pimentel, S.; Flowers, G. E., A numerical study of hydrologically driven glacier dynamics and subglacial flooding, Proc. R. London Soc. A, 467, 537-558 (2011) · Zbl 1219.86019 · doi:10.1098/rspa.2010.0211
[8] Hooke, R. LeB.; Laumann, T.; Kohler, J., Subglacial water pressures and the shape of subglacial conduits, J. Glaciol., 36, 122, 67-71 (1990)
[9] Ng, F. S. L., Mathematical modelling of subglacial drainage and erosion (1998)
[10] Cutler, P. M., Modelling the evolution of subglacial tunnels due to varying water input, J. Glaciol., 44, 485-497 (1998)
[11] Jarosch, A. H.; Gudmundsson, M. T., A numerical model for meltwater channel evolution in glaciers, Cryosphere, 6, 493-503 (2012) · doi:10.5194/tc-6-493-2012
[12] Gillow, K. A. and Howison, S. D., “Bibliography of free and moving boundary problems in Hele-Shaw and Stokes flow,” August 1998, see .
[13] Tanveer, S.; Vasconcelos, G. L., Bubble breakup in two-dimensional Stokes flow, Phys. Rev. Lett., 73, 21, 2845-2848 (1994) · doi:10.1103/PhysRevLett.73.2845
[14] Tanveer, S.; Vasconcelos, G. L., Time-evolving bubbles in two-dimensional Stokes flow, J. Fluid. Mech., 301, 325-344 (1995) · Zbl 0848.76015 · doi:10.1017/S0022112095003910
[15] Crowdy, D.; Siegel, M., Exact solutions for the evolution of a bubble in Stokes flow: A Cauchy transform approach, SIAM J. Appl. Math., 65, 3, 941-963 (2005) · Zbl 1072.76024 · doi:10.1137/S0036139903430847
[16] Howison, S. D.; Lacey, A. A.; Ockendon, J. R., Hele-Shaw free-boundary problems with suction, Q. J. Mech. Appl. Math., 41, 183-193 (1988) · doi:10.1093/qjmam/41.2.183
[17] Entov, V. M.; Etingov, P. L.; Kleinbock, D. Ya., On nonlinear interface dynamics in Hele-Shaw flows, Eur. J. Appl. Math., 6, 5, 399-420 (1995) · Zbl 0840.76014 · doi:10.1017/S0956792500001959
[18] Shelley, M. J.; Tian, F. R.; Wlodarski, K., Hele-Shaw flow and pattern formation in a time-dependent gap, Nonlinearity, 10, 6, 1471-1495 (1997) · Zbl 0911.76026 · doi:10.1088/0951-7715/10/6/005
[19] Crowdy, D. G., Exact solutions to the unsteady two-phase Hele-Shaw problem, Q. J. Mech. Appl. Math., 59, 475-485 (2006) · Zbl 1107.76031 · doi:10.1093/qjmam/hbl012
[20] Kida, S., Motion of an elliptic vortex in a uniform shear flow, J. Phys. Soc. Jpn., 50, 3517-3520 (1981) · doi:10.1143/JPSJ.50.3517
[21] Bilby, B. A.; Kolbuszewski, M. L., The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow, Proc. R. Soc. London, Ser. A, 355, 335-353 (1977) · Zbl 0406.76086 · doi:10.1098/rspa.1977.0101
[22] Betelú, S.; Gratton, R.; Diez, J., Observation of cusps during the levelling of free surfaces in viscous flows, J. Fluid Mech., 377, 137-149 (1998) · Zbl 0941.76529 · doi:10.1017/S0022112098003000
[23] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow (1992) · Zbl 0772.76005
[24] Pozrikidis, C., Expansion of a compressible gas bubble in Stokes flow, J. Fluid Mech., 442, 171-189 (2001) · Zbl 1023.76041 · doi:10.1017/S0022112001004992
[25] Pozrikidis, C., Computation of the pressure inside bubbles and pores in Stokes flow, J. Fluid Mech., 474, 319-337 (2003) · Zbl 1038.76016 · doi:10.1017/S0022112002002641
[26] Ockendon, H.; Ockendon, J. R., Viscous Flow (1995) · Zbl 0837.76001
[27] Nye, J. F., Water flow in glaciers: Jökulhaups, tunnels and veins, J. Glaciol., 17, 76, 181-207 (1976)
[28] Gulley, J. D.; Benn, D. I.; Screaton, E.; Martin, J., Mechanisms of englacial conduit formation and their implications for subglacial recharge, Q. Sci. Rev., 28, 1984-1999 (2009) · doi:10.1016/j.quascirev.2009.04.002
[29] Crowdy, D. G., On a class of geometry-driven free boundary problems, SIAM J. Appl. Math., 62, 945-954 (2002) · Zbl 1056.30039 · doi:10.1137/S0036139999357988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.