×

Operators induced by radial measures acting on the Dirichlet space. (English) Zbl 07673403

Summary: Let \(\mathbb{D}\) be the unit disc in the complex plane. Given a positive finite Borel measure \(\mu\) on the radius \([0, 1)\), we let \(\mu_n\) denote the \(n\)-th moment of \(\mu\) and we deal with the action on spaces of analytic functions in \(\mathbb{D}\) of the operator of Hibert-type \(\mathcal{H}_{\mu}\) and the operator of Cesàro-type \(\mathcal{C}_{\mu}\) which are defined as follows: If \(f\) is holomorphic in \(\mathbb{D}, f(z)=\sum_{n=0}^{\infty} a_n z^n (z\in\mathbb{D})\), then \(\mathcal{H}_{\mu} (f)\) is formally defined by \(\mathcal{H}_{\mu} (f)(z) = \sum_{n=0}^{\infty} \left( \sum_{k=0}^{\infty} \mu_{n+k}a_k\right) z^n (z\in\mathbb{D})\) and \(\mathcal{C}_{\mu} (f)\) is defined by \(\mathcal{C}_{\mu} (f)(z) = \sum_{n=0}^{\infty} \mu_n\left( \sum_{k=0}^n a_k\right) z^n (z\in\mathbb{D})\). These are natural generalizations of the classical Hilbert and Cesàro operators. A good amount of work has been devoted recently to study the action of these operators on distinct spaces of analytic functions in \(\mathbb{D}\). In this paper we study the action of the operators \(\mathcal{H}_{\mu}\) and \(\mathcal{C}_{\mu}\) on the Dirichlet space \(\mathcal{D}\) and, more generally, on the analytic Besov spaces \(B^p (1\leq p<\infty)\).

MSC:

47B38 Linear operators on function spaces (general)
30H25 Besov spaces and \(Q_p\)-spaces

References:

[1] Aleman, A.; Montes-Rodríguez, A.; Sarafoleanu, A., The eigenfunctions of the Hilbert matrix, Const. Approx., 36, 3, 353-374 (2012) · Zbl 1268.47040 · doi:10.1007/s00365-012-9157-z
[2] Andersen, KF, Cesàro averaging operators on Hardy spaces, Proc. R. Soc. Edinburgh Sect. A, 126, 3, 617-624 (1996) · Zbl 0865.47020 · doi:10.1017/S0308210500022939
[3] Anderson, JM; Clunie, J.; Pommerenke, Ch, On Bloch functions and normal functions, J. Reine Angew. Math., 270, 12-37 (1974) · Zbl 0292.30030
[4] Arazy, J.; Fisher, SD; Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math., 363, 110-145 (1985) · Zbl 0566.30042
[5] Aulaskari, R.; Girela, D.; Wulan, H., Taylor coefficients and mean growth of the derivative of \(Q_p\) functions, J. Math. Anal. Appl., 258, 2, 415-428 (2001) · Zbl 0980.30024 · doi:10.1006/jmaa.2000.7259
[6] Aulaskari, R., Lappan, P.: Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications (Hong Kong, 1993), 136-146, Pitman Res. Notes Math. Ser., 305, Longman Sci. Tech., Harlow (1994) · Zbl 0826.30027
[7] Aulaskari, R.; Xiao, J.; Zhao, R., On subspaces and subsets of \(BMOA\) and \(UBC\), Analysis, 15, 2, 101-121 (1995) · Zbl 0835.30027 · doi:10.1524/anly.1995.15.2.101
[8] Bao, G.; Sun, F.; Wulan, H., Carleson measures and the range of a Cesàro-like operator acting on \(H^\infty \), Anal. Math. Phys., 12, 142 (2022) · Zbl 07610418 · doi:10.1007/s13324-022-00752-z
[9] Bao, G.; Wulan, H., Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl., 409, 1, 228-235 (2014) · Zbl 1326.47028 · doi:10.1016/j.jmaa.2013.07.006
[10] Bao, G.; Wulan, H.; Ye, F., The range of the Cesàro operator acting on \(H^\infty \), Can. Math. Bull., 63, 3, 633-642 (2020) · Zbl 1543.47082 · doi:10.4153/S0008439519000717
[11] Bao, G.; Zhu, K., Actions of the Möbius group on analytic functions, Studia Math., 260, 2, 207-228 (2021) · Zbl 1475.30119 · doi:10.4064/sm200924-21-12
[12] Blasco, Ó., Cesàro-type operators on Hardy spaces, J. Math. Anal. Appl. (2023) · Zbl 1526.30067 · doi:10.1016/j.jmaa.2023.127017
[13] Bourdon, P., Shapiro, J., Sledd, W.: Fourier series, mean Lipschitz spaces and bounded mean oscillation, Analysis at Urbana 1, Proc. of the Special Yr. in Modern Anal. at the Univ. of Illinois 1986-87, (E.R. Berkson, N.T. Peck and J. Uhl, eds.), London Math. Soc. Lecture Notes Ser. 137, Cambridge Univ. Press, 81-110 (1989) · Zbl 0672.42003
[14] Chatzifountas, Ch; Girela, D.; Peláez, JÁ, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl., 413, 1, 154-168 (2014) · Zbl 1308.42021 · doi:10.1016/j.jmaa.2013.11.046
[15] Danikas, N.; Siskakis, AG, The Cesàro operator on bounded analytic functions, Analysis, 13, 3, 295-299 (1993) · Zbl 0798.47022 · doi:10.1524/anly.1993.13.3.295
[16] Diamantopoulos, E., Hilbert matrix on Bergman spaces, Illinois J. Math., 48, 3, 1067-1078 (2004) · Zbl 1080.47031 · doi:10.1215/ijm/1258131071
[17] Diamantopoulos, E.; Siskakis, AG, Composition operators and the Hilbert matrix, Studia Math., 140, 191-198 (2000) · Zbl 0980.47029 · doi:10.4064/sm-140-2-191-198
[18] Donaire, JJ; Girela, D.; Vukotić, D., On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math., 553, 43-72 (2002) · Zbl 1006.30031
[19] Dostanić, M.; Jevtić, M.; Vukotić, D., Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal., 254, 2800-2815 (2008) · Zbl 1149.47017 · doi:10.1016/j.jfa.2008.02.009
[20] Duren, P.L.: Theory of \(H^p\) spaces, Academic Press, New York-London, 1970. Dover, Mineola-New York, Reprint (2000) · Zbl 0215.20203
[21] Duren, P.L., Schuster, A.P.: Bergman Spaces, Math. Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, Rhode Island (2004) · Zbl 1059.30001
[22] Essén, M.; Xiao, J., Some results on \(Q_p\) spaces, \(0<p<1\), J. Reine Angew. Math., 485, 173-195 (1997) · Zbl 0866.30027
[23] Galanopoulos, P.; Girela, D.; Merchán, N., Cesàro-like operators acting on spaces of analytic functions, Anal. Math. Phys., 12, 2, 51 (2022) · Zbl 1486.30139 · doi:10.1007/s13324-022-00649-x
[24] Galanopoulos, P., Girela, D., Merchán, N.: Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions, preprint · Zbl 07707893
[25] Galanopoulos, P.; Peáez, JÁ, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 200, 3, 201-220 (2010) · Zbl 1206.47024 · doi:10.4064/sm200-3-1
[26] Girela, D.: Analytic functions of bounded mean oscillation. In: Complex Function Spaces, Mekrijärvi 1999 Editor: R. Aulaskari. Univ. Joensuu Dept. Math. Rep. Ser. 4, Univ. Joensuu, Joensuu (2001) pp. 61-170 · Zbl 0981.30026
[27] Girela, D.; Merchán, N., A Hankel matrix acting on spaces of analytic functions, Integr. Equ. Oper. Theory, 89, 4, 581-594 (2017) · Zbl 1508.47056 · doi:10.1007/s00020-017-2409-3
[28] Girela, D.; Merchán, N., A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal., 12, 2, 374-398 (2018) · Zbl 1496.47054 · doi:10.1215/17358787-2017-0023
[29] Girela, D.; Merchán, N., Hankel matrices acting on the Hardy space \(H^1\) and on Dirichlet spaces, Rev. Mat. Complut., 32, 3, 799-822 (2019) · Zbl 1443.47032 · doi:10.1007/s13163-018-0288-z
[30] Holland, F.; Walsh, D., Growth estimates for functions in the Besov spaces \(A_p\), Proc. R. Irish Acad. Sect. A, 88, 1, 1-18 (1988) · Zbl 0629.30036
[31] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces, Graduate Texts in Mathematics 199, Springer. Berlin, etc, New York (2000)
[32] Jevtić, M.; Karapetrović, B., Hilbert matrix on spaces of Bergman-type, J. Math. Anal. Appl., 453, 1, 241-254 (2017) · Zbl 1456.47011 · doi:10.1016/j.jmaa.2017.04.002
[33] Lanucha, B.; Nowak, M.; Pavlović, M., Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math., 37, 161-174 (2012) · Zbl 1258.47047 · doi:10.5186/aasfm.2012.3715
[34] Lindström, M.; Miihkinen, S.; Norrbo, D., Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces, Adv. Math., 408 (2022) · Zbl 07588413 · doi:10.1016/j.aim.2022.108598
[35] Merchán, N., Mean Lipschitz spaces and a generalized Hilbert operator, Collect. Math., 70, 1, 59-69 (2019) · Zbl 1415.30032 · doi:10.1007/s13348-018-0217-y
[36] Miao, J., The Cesàro operator is bounded on \(H^p\) for \(0<p<1\), Proc. Am. Math. Soc., 116, 4, 1077-1079 (1992) · Zbl 0787.47029
[37] Pau, J.; Perälä, A., A Toeplitz-type operator on Hardy spaces in the unit ball, Trans. Am. Math. Soc., 373, 5, 3031-3062 (2020) · Zbl 1444.47045 · doi:10.1090/tran/8053
[38] Power, SC, Vanishing Carleson measures, Bull. Lond. Math. Soc., 12, 207-210 (1980) · Zbl 0438.47033 · doi:10.1112/blms/12.3.207
[39] Shields, A.L.: An analogue of the Fejér-Riesz theorem for the Dirichlet space, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 810-820, Wadsworth Math. Ser., Wadsworth, Belmont, CA, (1983) · Zbl 0504.46018
[40] Siskakis, AG, Composition semigroups and the Cesàro operator on \(H^p\), J. Lond. Math. Soc. (2), 36, 1, 153-164 (1987) · Zbl 0634.47038 · doi:10.1112/jlms/s2-36.1.153
[41] Siskakis, AG, The Cesàro operator is bounded on \(H^1\), Proc. Am. Math. Soc., 110, 2, 461-462 (1990) · Zbl 0719.47020
[42] Siskakis, AG, On the Bergman space norm of the Cesàro operator, Arch. Math. (Basel), 67, 4, 312-318 (1996) · Zbl 0859.47024 · doi:10.1007/BF01197596
[43] Stegenga, DA, Multipliers of the Dirichlet space, Illinois J. Math., 24, 1, 113-139 (1980) · Zbl 0432.30016 · doi:10.1215/ijm/1256047800
[44] Stempak, K., Cesàro averaging operators, Proc. R. Soc. Edinburgh Sect. A, 124, 1, 121-126 (1994) · Zbl 0806.47027 · doi:10.1017/S030821050002922X
[45] Widom, H., Hankel matrices, Trans. Am. Math. Soc., 121, 1-35 (1966) · Zbl 0148.12303 · doi:10.1090/S0002-9947-1966-0187099-X
[46] Xiao, J., Holomorphic \(Q\) classes. Lecture Notes in Mathematics (2001), Berlin: Springer, Berlin · Zbl 0983.30001 · doi:10.1007/b87877
[47] Zhu, K., Analytic Besov spaces, J. Math. Anal. Appl., 157, 318-336 (1991) · Zbl 0733.30026 · doi:10.1016/0022-247X(91)90091-D
[48] Zhu, K.: Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. Reprint: Math. Surveys and Monographs, Vol. 138, American Mathematical Society, Providence, Rhode Island (2007) · Zbl 0706.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.