×

A Hankel matrix acting on spaces of analytic functions. (English) Zbl 1508.47056

Summary: If \(\mu \) is a positive Borel measure on the interval \([0,1)\) we let \(\mathcal H_\mu \) be the Hankel matrix \(\mathcal H_\mu =(\mu_{n, k})_{n,k\geq 0}\) with entries \(\mu_{n, k}=\mu_{n+k}\), where, for \(n\,=\,0, 1, 2, \dots \), \(\mu_n\) denotes the moment of order \(n\) of \(\mu \). This matrix induces formally the operator \[ \mathcal {H}_\mu (f)(z)= \sum_{n=0}^{\infty}\left( \sum_{k=0}^{\infty} \mu_{n,k}{a_k}\right) z^n \] on the space of all analytic functions \(f(z)=\sum_{k=0}^\infty a_kz^k\) in the unit disc \(\mathbb D\). This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some recent papers concerning the action of the operators \(\mathcal {H}_\mu \) on Hardy spaces and on Möbius invariant spaces.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
30H05 Spaces of bounded analytic functions of one complex variable
30H10 Hardy spaces

References:

[1] Aleman, A., Montes-Rodríguez, A., Sarafoleanu, A.: The eigenfunctions of the Hilbert matrix. Constr. Approx. 36(3), 353-374 (2012) · Zbl 1268.47040 · doi:10.1007/s00365-012-9157-z
[2] Anderson, J.M., Clunie, J., Pommerenke, Ch.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12-37 (1974) · Zbl 0292.30030
[3] Arazy, J., Fisher, S.D., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363, 110-145 (1985) · Zbl 0566.30042
[4] Aulaskari, R., Girela, D., Wulan, H.: Taylor coefficients and mean growth of the derivative of \[Q_p\] Qp functions. J. Math. Anal. Appl. 258(2), 415-428 (2001) · Zbl 0980.30024 · doi:10.1006/jmaa.2000.7259
[5] Aulaskari, R., Lappan, P.: Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, complex analysis and its applications (Harlow), Pitman Research Notes in Math, vol. 305, Longman Scientific and Technical, pp. 136-146 (1994) · Zbl 0826.30027
[6] Aulaskari, R., Stegenga, D.A., Xiao, J.: Some subclasses of BMOA and their characterization in terms of Carleson measures Rocky Mountain. J. Math. 26(2), 485-506 (1996) · Zbl 0861.30033
[7] Aulaskari, R., Xiao, J., Zhao, R.: On subspaces and subsets of \[BMOA\] BMOA and \[UBC\] UBC. Analysis 15, 101-121 (1995) · Zbl 0835.30027 · doi:10.1524/anly.1995.15.2.101
[8] Bao, G., Wulan, H.: Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl. 409(1), 228-235 (2014) · Zbl 1326.47028 · doi:10.1016/j.jmaa.2013.07.006
[9] Blasco, O., Jarchow, H.: A note on Carleson measures for Hardy spaces. Acta Sci. Math. (Szeged) 71(1-2), 371-389 (2005) · Zbl 1101.47022
[10] Bonsall, F.F.: Boundedness of Hankel matrices. J. Lond. Math. Soc. (2) 29(2), 289-300 (1984) · Zbl 0561.47027 · doi:10.1112/jlms/s2-29.2.289
[11] Carleson, L.: Interpolation by bounded analytic functions and the corona problem. Ann. Math. 76, 547-559 (1962) · Zbl 0112.29702 · doi:10.2307/1970375
[12] Chatzifountas, Ch., Girela, D., Peláez, J.A.: A generalized Hilbert matrix acting on Hardy spaces. J. Math. Anal. Appl. 413(1), 154-168 (2014) · Zbl 1308.42021 · doi:10.1016/j.jmaa.2013.11.046
[13] Diamantopoulos, E.: Hilbert matrix on Bergman spaces. Ill. J. Math. 48(3), 1067-1078 (2004). Fall · Zbl 1080.47031
[14] Diamantopoulos, E., Siskakis, A.G.: Composition operators and the Hilbert matrix. Stud. Math. 140, 191-198 (2000) · Zbl 0980.47029
[15] Donaire, J.J., Girela, D., Vukotić, D.: On univalent functions in some Möbius invariant spaces. J. Reine Angew. Math. 553, 43-72 (2002) · Zbl 1006.30031
[16] Donaire, J.J., Girela, D., Vukotić, D.: On the growth and range of functions in Möbius invariant spaces. J. Anal. Math. 112, 237-260 (2010) · Zbl 1211.30063 · doi:10.1007/s11854-010-0029-9
[17] Dostanić, M., Jevtić, M., Vukotić, D.: Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type. J. Funct. Anal. 254, 2800-2815 (2008) · Zbl 1149.47017 · doi:10.1016/j.jfa.2008.02.009
[18] Duren, P.L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75, 143-146 (1969) · Zbl 0184.30503 · doi:10.1090/S0002-9904-1969-12181-6
[19] Duren, P.L.: Theory of \[H^p\] Hp Spaces. Academic Press, New York (1970). Dover, Mineola, New York, Reprint (2000) · Zbl 0215.20203
[20] Galanopoulos, P., Girela, D., Peláez, J.A., Siskakis, A.: Generalized Hilbert operators. Ann. Acad. Sci. Fenn. Math. 39(1), 231-258 (2014) · Zbl 1297.47030 · doi:10.5186/aasfm.2014.3912
[21] Galanopoulos, P., Peláez, J.A.: A Hankel matrix acting on Hardy and Bergman spaces. Stud. Math. 200(3), 201-220 (2010) · Zbl 1206.47024 · doi:10.4064/sm200-3-1
[22] Girela, D.: Analytic functions of bounded mean oscillation. In: Aulaskari, R. (ed.) Complex Function Spaces, Mekrijärvi 1999. Univ. Joensuu Dept. Math. Rep. Ser. 4, Univ. Joensuu, Joensuu, pp. 61-170 (2001) · Zbl 0981.30026
[23] Girela, D., Merchán, N.: A generalized Hilbert operator acting on conformally invariant spaces. Banach J. Math. Anal., advance publication, 8 Sep 2017. https://doi.org/10.1215/17358787-2017-0023, https://projecteuclid.org/euclid.bjma/1504857614 · Zbl 1496.47054
[24] Holland, F., Walsh, D.: Boundedness criteria for Hankel operators. Proc. R. Irish Acad. Sect. A 84(2), 141-154 (1984) · Zbl 0549.47011
[25] Holland, F., Walsh, D.: Growth estimates for functions in the Besov spaces \[A_p\] Ap. Proc. R. Irish Acad. Sect. A 88, 1-18 (1988) · Zbl 0629.30036
[26] Hwang, J.S., Lappan, P.: Coefficients of Bloch functions and normal functions. Ann. Acad. Sci. Fenn. Ser. A I Math 12(1), 69-75 (1987) · Zbl 0626.30029 · doi:10.5186/aasfm.1987.1214
[27] Jevtić, M., Karapetrović, B.: Hilbert matrix on spaces of Bergman-type. J. Math. Anal. Appl. 453(1), 241-254 (2017) · Zbl 1456.47011 · doi:10.1016/j.jmaa.2017.04.002
[28] Lanucha, B., Nowak, M., Pavlović, M.: Hilbert matrix operator on spaces of analytic functions. Ann. Acad. Sci. Fenn. Math. 37, 161-174 (2012) · Zbl 1258.47047 · doi:10.5186/aasfm.2012.3715
[29] Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63(3), 595-619 (1991) · Zbl 0774.42011 · doi:10.1112/plms/s3-63.3.595
[30] Papadimitrakis, M., Virtanen, J.A.: Hankel and Toeplitz transforms on \[Hq\] Hq: continuity, compactness and Fredholm properties. Integral Equ. Oper. Theory 61(4), 573-591 (2008) · Zbl 1201.47032 · doi:10.1007/s00020-008-1609-2
[31] Pavlović, M.: Analytic functions with decreasing coefficients and Hardy and Bloch spaces. Proc. Edinb. Math. Soc. Ser. 2 56(2), 623-635 (2013) · Zbl 1327.30062 · doi:10.1017/S001309151200003X
[32] Peláez, J.A., Rättyä, J.: Generalized Hilbert operators on weighted Bergman spaces. Adv. Math. 240, 227-267 (2013) · Zbl 1288.30060 · doi:10.1016/j.aim.2013.03.006
[33] Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003) · Zbl 1030.47002 · doi:10.1007/978-0-387-21681-2
[34] Power, S.C.: Vanishing Carleson measures. Bull. Lond. Math. Soc. 12, 207-210 (1980) · Zbl 0438.47033 · doi:10.1112/blms/12.3.207
[35] Rubel, L.E., Timoney, R.M.: An extremal property of the Bloch space. Proc. Am. Math. Soc. 75(1), 45-49 (1979) · Zbl 0405.46020 · doi:10.1090/S0002-9939-1979-0529210-9
[36] Sledd, W.T., Stegenga, D.A.: An \[H^1\] H1 multiplier theorem. Ark. Mat. 19(2), 265-270 (1981) · Zbl 0488.42022 · doi:10.1007/BF02384484
[37] Videnskii, I.V.: An analogue of Carleson measures, Dokl. Akad. Nauk SSSR 298(5) 1042-1047, (1988) (Russian); translation in Soviet Math. Dokl. 37(1), 186-190 (1988) · Zbl 1101.47022
[38] Widom, H.: Hankel matrices. Trans. Am. Math. Soc. 121, 1-35 (1966) · Zbl 0148.12303 · doi:10.1090/S0002-9947-1966-0187099-X
[39] Xiao, J.: Holomorphic \[Q\] Q Classes, Lecture Notes in Mathematics, vol. 1767. Springer (2001) · Zbl 0983.30001
[40] Zhao, R.: On logarithmic Carleson measures. Acta Sci. Math. (Szeged) 69(3-4), 605-618 (2003) · Zbl 1050.30024
[41] Zhu, K.: Analytic Besov spaces. J. Math. Anal. Appl. 157, 318-336 (1991) · Zbl 0733.30026 · doi:10.1016/0022-247X(91)90091-D
[42] Zhu, K.: Operator Theory in Function Spaces, 2nd edn, Mathematical Surveys and Monographs, vol. 138 (2007) · Zbl 1123.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.