×

An exponential Chebyshev second kind approximation for solving high-order ordinary differential equations in unbounded domains, with application to Dawson’s integral. (English) Zbl 1375.65107

Summary: A new exponential Chebyshev operational matrix of derivatives based on Chebyshev polynomials of second kind (ESC) is investigated. The new operational matrix of derivatives of the ESC functions is derived and introduced for solving high-order linear ordinary differential equations with variable coefficients in unbounded domain using the collocation method. As an application the introduced method is used to evaluate Dawson’s integral by solving its differential equation. The corresponding differential equation to Dawson’s integral is a boundary value problem with conditions tends to infinity. The obtained numerical results are compared with the exact solution and showed good accuracy.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65D25 Numerical differentiation
34B05 Linear boundary value problems for ordinary differential equations

References:

[1] Siyyam, I. H., Laguerre tau methods for solving higher-order ordinary differential equations, J. Comput. Anal. Appl., 3, 2, 173-182 (2001) · Zbl 1024.65049
[2] Parand, K.; Razzaghi, M., Rational Chebyshev tau method for solving higher-order ordinary differential equations, Int. J. Comput. Math., 81, 1, 73-80 (2004) · Zbl 1047.65052
[3] Guo, B.; Yan, J., Legendre-Gauss collocation method for initial value problems of second order ordinary differential equations, Appl. Numer. Math., 59, 6, 1386-1408 (2009) · Zbl 1162.65374
[4] Wang, Z.; Guo, B., Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations, J. Sci. Comput., 52, 1, 226-255 (2012) · Zbl 1255.65133
[5] Awoyemi, D. O.; Idowu, O. M., A class of hybrid collocation methods for third-order ordinary differential equations, Int. J. Comput. Math., 82, 10, 1287-1293 (2005) · Zbl 1117.65350
[6] Adjerid, S.; Temimi, H., A discontinuous Galerkin method for higher-order ordinary differential equations, Comput. Methods Appl. Mech. Eng., 197, 1, 202-218 (2007) · Zbl 1169.65328
[7] Smith, C. R., The Sinc-Galerkin method for fourth-order differential equations, SIAM J. Numer. Anal., 28, 3, 760-788 (1991) · Zbl 0735.65058
[8] Abd-Elhameed, W. M.; Hany; Ahmed, M.; Youssri, Y. H., A new generalized Jacobi Galerkin operational matrix of derivatives: two algorithms for solving fourth-order boundary value problems, Adv. Difference Equ., 1, 2016, 1-16 (2016) · Zbl 1422.65425
[9] Abd-Elhameed, W. M.; Doha, E. H.; Youssri, Y. H., Efficient spectral-Petrov-Galerkin methods for third-and fifth-order differential equations using general parameters generalized Jacobi polynomials, Quaestiones Mathematicae, 36, 1, 15-38 (2013) · Zbl 1274.65222
[10] Abd-Elhameed, W. M.; Youssri, Y. H.; Doha, E. H., A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations, Math. Sci., 9, 2, 93-102 (2015) · Zbl 1407.65080
[11] Doha, E. H.; Abd-Elhameed, W. M.; Bhrawy, A. H., New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collectanea Mathematica, 64, 3, 373-394 (2013) · Zbl 1281.65108
[12] Mason, J. C.; Handscomb, D. C., Chebyshev Polynomials (2003), CRC Press: CRC Press Boca Raton · Zbl 1015.33001
[13] Wright, K., Chebyshev collocation methods for ordinary differential equations, Comput. J., 6, 4, 358-365 (1964) · Zbl 0117.11203
[14] Sezer, M.; Kaynak, M., Chebyshev polynomial solutions of linear differential equations, Int. J. Math. Edu. Sci. Technol., 27, 4, 607-618 (1996) · Zbl 0887.34012
[15] Boyd, J. P., Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70, 63-88 (1987) · Zbl 0614.42013
[16] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142 (1987) · Zbl 0615.65090
[17] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2000), DOVER Publications: DOVER Publications Mineola
[18] Parand, K.; Razzaghi, M., Rational Chebyshev tau method for solving high- order ordinary differential equations, Int. J. Comput. Math., 81, 73-80 (2004) · Zbl 1047.65052
[19] Parand, K.; Taghavi, A.; Shahini, M., Comparison between rational Chebyshev and modified generalized Laguerre functions pseudospectral methods for solving Lane-Emden and unsteady gas equations, Acta Phys. Pol. B, 40, 6, 1749 (2009)
[20] Sezer, M.; Gulsu, M.; Tanay, B., Rational Chebyshev collocation method for solving higher-order linear ordinary differential equations, Wiley Online Lib. (2010)
[21] Yalcinbas, S.; Ozsoy, N.; Sezer, M., Approximate solution of higher-order linear differential equations by means of a new rational Chebyshev collocation method, Math. Comput. Appl., 15, 1, 45-56 (2010) · Zbl 1201.65137
[22] Ramadan, M. A.; Raslan, K. R.; Nassar, M. A., An approximate analytical solution of higher-order linear differential equations with variable coefficients using improved rational Chebyshev collocation method, Appl. Comput. Math., 3, 6, 315-322 (2014)
[23] Ramadan, M. A.; Raslan, K. R.; Nassar, M. A., Numerical solution of system of higher order linear ordinary differential equations with variable coefficients using two proposed schemes for rational Chebyshev functions, Global J. Math., 3, 2, 322-327 (2015)
[24] Ramadan, M. A.; Raslan, K. R.; Nassar, M. A., An approximate solution of systems of high-order linear differential equations with variable coefficients by means of a rational Chebyshev collocation method, Electron. J. Math. Anal. Appl., 4, 1, 86-98 (2016) · Zbl 1446.65058
[25] Ramadan, M. A.; Raslan, K. R.; Hadhoud, A. R.; Nassar, M. A., Rational Chebyshev functions with new collocation points in semi-infinite domains for solving higher-order linear ordinary differential equations, J. Adv. Math., 7, 5403-5410 (2015)
[26] Ramadan, M. A.; Raslan, K. R.; Hadhoud, A. R.; Nassar, M. A., Numerical solution of high-order linear integro-differential equations with variable coefficients using two proposed schemes for rational Chebyshev functions, New Trends in Mathematical Sciences, 4, 3, 22-35 (2016)
[27] Koc, A. B.; Kurnaz, A., A new kind of double Chebyshev polynomial approximation on unbounded domains, Boundary Value Prob., 1, 2013, 1687-2770 (2013) · Zbl 1279.35002
[28] Ramadan, M. A.; Raslan, K. R.; El Danaf, T. S.; Abd El salam, M. A., On the exponential Chebyshev approximation in unbounded domains: a comparison study for solving high-order ordinary differential equations, Int. J. Pure Appl. Math., 105, 3, 399-413 (2015)
[29] Ramadan, M. A.; Raslan, K. R.; El Danaf, T. S.; Abd El salam, M. A., A new exponential Chebyshev operational matrix of derivatives for solving high-order ordinary differential equations in unbounded domains, J. Mod. Methods Numer. Math., 7, 1, 19-30 (2016) · Zbl 1344.65072
[30] Mason, J. C., Chebyshev polynomials of second, third and fourth kinds in approximation, indefinite integration, and integral transforms, J. Comput. Appl. Math., 49, 169-178 (1993) · Zbl 0793.33010
[31] Sweilam, N. H.; Nagy, A. M.; Adel; El-Sayed, A., Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos Solit. Fract., 73, 141-147 (2015) · Zbl 1352.65401
[32] King, A. C.; Billingham, J.; Otto, S. R., Differential Equations Linear, Nonlinear, Ordinary, Partial (2003), Cambridge University Press · Zbl 1034.34001
[33] Cody, W. J.; Paciorek, K. A.; Thacher, H. C., Chebyshev approximations for Dawson’s integral, Math. Comput., 23, 171-178 (1970) · Zbl 0194.47001
[34] Coleman, J. P., Complex polynomial approximation by the Lanczos-s-method: Dawson’s integral,, J. Comput. Appl. Math., 20, 137-151 (1987) · Zbl 0639.65011
[35] Lether, F. G., Constrained near-minimax rational approximations to Dawson’s integral, Appl. Math. Comput., 88, 267-274 (1997) · Zbl 0905.65037
[36] Boyd, J. P., Evaluating of Dawson’s Integral by solving its differential equation using orthogonal rational Chebyshev functions, Appl. Math. Comput., 204, 914-919 (2008) · Zbl 1157.65331
[37] Weideman, J. A.C., Computation of the complex error function, SIAM J. Numer. Anal., 31, 1497-1518 (1994) · Zbl 0832.65011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.