×

A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations. (English) Zbl 1407.65080

Summary: In this article, a new operational matrix method based on shifted Legendre polynomials is presented and analyzed for obtaining numerical spectral solutions of linear and nonlinear second-order boundary value problems. The method is novel and essentially based on reducing the differential equations with their boundary conditions to systems of linear or nonlinear algebraic equations in the expansion coefficients of the sought-for spectral solutions. Linear differential equations are treated by applying the Petrov-Galerkin method, while the nonlinear equations are treated by applying the collocation method. Convergence analysis and some specific illustrative examples include singular, singularly perturbed and Bratu-type equations are considered to ascertain the validity, wide applicability and efficiency of the proposed method. The obtained numerical results are compared favorably with the analytical solutions and are more accurate than those discussed by some other existing techniques in the literature.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)

Software:

Matlab

References:

[1] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Springer, New York (1988) · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[2] Fornberg, B.: A practical guide to pseudospectral methods. Cambridge University Press, Cambridge (1998) · Zbl 0912.65091
[3] Peyret, R.: Spectral methods for incompressible viscous flow. Springer, New York (2002) · Zbl 1005.76001 · doi:10.1007/978-1-4757-6557-1
[4] Trefethen, L.N.: Spectral methods in MATLAB. SIAM, Philadelphia (2000) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[5] Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. Comp. Appl. Math. 128, 83-131 (2001) · Zbl 0974.65093 · doi:10.1016/S0377-0427(00)00510-0
[6] Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comp. 247, 30-46 (2014) · Zbl 1339.65188 · doi:10.1016/j.amc.2014.08.062
[7] Guo B.-Y., Yan J.-P.: Legendre-Gauss collocation method for initial value problems of second order ordinary differential equations. Appl. Numer. Math. 59, 1386-1408 (2009) · Zbl 1162.65374 · doi:10.1016/j.apnum.2008.08.007
[8] Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term timespace fractional partial differential equations. J. Comp. Phys. 281, 876-895 (2015) · Zbl 1352.65386 · doi:10.1016/j.jcp.2014.10.060
[9] Doha, E.H., Abd-Elhameed, W.M.: Effcient spectral ultraspherical-dual-PetrovGalerkin algorithms for the direct solution of (2n+1)th-order linear differential equations. Math. Comput. Simulat. 79, 3221-3242 (2009) · Zbl 1169.65326 · doi:10.1016/j.matcom.2009.03.011
[10] Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Efficient spectral-Petrov-Galerkin methods for the integrated forms of third- and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials. Appl. Math. Comput. 218, 7727-7740 (2012) · Zbl 1242.65148 · doi:10.1016/j.amc.2012.01.031
[11] Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Efficient spectral-Petrov-Galerkin methods for third- and fifth-order differential equations using general parameters generalized Jacobi polynomials. Quaest. Math. 36, 15-38 (2013) · Zbl 1274.65222 · doi:10.2989/16073606.2013.779945
[12] Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials. Collect. Math. 64(3), 373-394 (2013) · Zbl 1281.65108 · doi:10.1007/s13348-012-0067-y
[13] Abd-Elhameed W. M.: Some algorithms for solving third-order boundary value problems using novel operational matrices of generalized Jacobi polynomials. Abs. Appl. Anal., vol 2015, Article ID 672703, p. 10 · Zbl 1352.65194
[14] Yu, C.C., Heinrich, J.C.: Petrov-Galerkin methods for the time dependent convective transport equation. Int. J. Num. Mech. Eng. 23, 883-901 (1986) · Zbl 0631.65109 · doi:10.1002/nme.1620230510
[15] Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548-571 (2006) · Zbl 1020.65088 · doi:10.1137/S1064827500378933
[16] Doha, E.H., Abd-Elhameed, W.M., Bassuony, M.A.: New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin methods. J. Comput. Phys. 236, 563-579 (2013) · Zbl 1286.65093 · doi:10.1016/j.jcp.2012.11.009
[17] Abd-Elhameed, W.M.: On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. CMES Comp. Model. Eng. Sci. 101(3), 159-185 (2014) · Zbl 1356.65190
[18] Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2nth-order linear differential equations. Appl. Math. Model. 33, 1982-1996 (2009) · Zbl 1205.65224 · doi:10.1016/j.apm.2008.05.005
[19] Bratu, G.: Sur les quations intgrales non linaires. Bull. Soc. Math. France 43, 113-142 (1914) · JFM 45.0525.03
[20] Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Trans. Amer. Math. Soc. Ser. 2, 295-381 (1963) · Zbl 0127.04901
[21] Aregbesola, Y.A.S.: Numerical solution of Bratu problem using the method of weighted residual. Electron. J. South. Afr. Math. Sci. 3, 1-7 (2003)
[22] Hassan, I., Erturk, V.: Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2, 1493-1504 (2007) · Zbl 1152.34008
[23] He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[24] Li, S., Liao, S.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854-865 (2005) · Zbl 1151.35354 · doi:10.1016/j.amc.2004.09.066
[25] Mounim, A., de Dormale, B.: From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem. Numer. Meth. Part. Diff. Eq. 22, 761-775 (2006) · Zbl 1099.65098 · doi:10.1002/num.20116
[26] Syam, M., Hamdan, A.: An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704-713 (2006) · Zbl 1093.65108 · doi:10.1016/j.amc.2005.10.021
[27] Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652-663 (2005) · Zbl 1073.65068 · doi:10.1016/j.amc.2004.06.059
[28] Abbasbandy, S., Hashemi M.S., Liu C.-S.: The Lie-group shooting method for solving the Bratu equation. Appl. Math. Comput. 16, 4238-4249 (2011) · Zbl 1222.65067
[29] Caglar, H., Caglar, N., Özer M., Valaristos A., Anagnostopoulos A.N.: B-spline method for solving Bratu’s problem. Int. J. Comput. Math. 87(8), 1885-1891 (2010) · Zbl 1197.65090 · doi:10.1080/00207160802545882
[30] Khuri, S.A.: A new approach to Bratu’s problem. Appl. Math. Comput. 147, 131-136 (2004) · Zbl 1032.65084 · doi:10.1016/S0096-3003(02)00656-2
[31] Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problems. J. Comput. Phys. 159, 125-138 (2000) · Zbl 0959.65091 · doi:10.1006/jcph.2000.6452
[32] Boyd, P.J.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553-5565 (2011) · Zbl 1222.65070 · doi:10.1016/j.amc.2010.12.029
[33] Adams, R.A., Fournier, J.F.: Sobolev spaces, pure and applied mathematics series. Academic Press, New York (2003) · Zbl 1098.46001
[34] Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. Comput. Math. Appl. 56, 930-941 (2008) · Zbl 1155.65365 · doi:10.1016/j.camwa.2008.01.023
[35] Natesan, S., Ramanujam, N.: Shooting method for the solution of singularly perturbed two-point boundary-value problems having less severe boundary layer. Appl. Math. Comput. 133, 623-641 (2002) · Zbl 1035.65081 · doi:10.1016/S0096-3003(01)00263-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.