×

Computing jumping numbers in higher dimensions. (English) Zbl 1462.14022

Let \(X\) by a smooth projective variety, \(\mathfrak{a}\) an ideal sheaf on \(X\) and \(\pi: Y\to X\) a log resolution of the pair \((X,\mathfrak{a})\). Let \(F\) be the Cartier divisor such that \(\mathfrak{a}\cdot\mathcal{O}_Y=\mathcal{O}_Y(-F)\) and \(K_{\pi}=K_Y-\pi^*K_X\). For a non-negative number \(c\), one can associate to \(\mathfrak{a}\) a multiplier ideal sheaf \(\mathcal{J}(X, \mathfrak{a}^c)=\pi_*\mathcal{O}_Y(K_\pi-\lfloor cF\rfloor)\) which measures the complexity of the singularity of \(\mathfrak{a}\). When the values of \(c\) increases, the multiplier ideal may change. The values of \(c\) such that the multiplier ideal changes are known as the jumping numbers of the pair \((X, \mathfrak{a})\).
In the paper under review, the authors generalize the algorithm for computing the jumping numbers on rational surfaces in [M. Alberich-Carramiñana et al., Michigan Math. J. 65, No. 2, 287–320 (2016; Zbl 1357.14025)] to the higher dimensional varieties. The algorithm starts with computing supercandidates and then check whether they are jumping number.
To compute supercandiates, which forms a set containing the set of jumping numbers (Theorem 4.4), the authors first generalize \(\pi\)-antinef divisors on surfaces to \(\pi\)-antieffective divisors to higher dimension and show that every divisor \(D\) has a unique \(\pi\)-antieffective closure (Theorem 3.4). Starting with the first supercandiate, the log canonical threshold which is the smallest jumping number, the set of supercandidates is constructed inductively by adding the number \(\min\limits_{i}\left\{\frac{k_1+1+e_i^{\lambda}}{e_i}\right\}\) if \(D_\lambda = \sum\limits_i e_i^{\lambda}E_i\) is the \(\pi\)-antieffective closure of \(\lfloor cF\rfloor-K_\pi\). Associate to a supercandidate \(\lambda\), the authors define the minimal jumping divisor \(G_\lambda\) to be the reduced divisor supported on the components \(E_i\) where \(\min\limits_{i}\left\{\frac{k_1+1+e_i^{\lambda}}{e_i}\right\}=\frac{k_1+1+e_i^{\lambda}}{e_i}\).
A necessary condition that a supercandidate \(\lambda\) is a jumping number is that the minimal jumping divisor \(G_\lambda\) contributes \(\lambda\) (Proposition 4.7) that is \(\mathcal{J}(X,\mathfrak{a}^\lambda)\subsetneq \pi_*\mathcal{O}_Y(K_\pi-\lfloor \lambda F\rfloor + G_\lambda)\). A sufficient condition is that \(G_\lambda\) has a connected component which is irreducible. Based on this criterion and the idea of looking for contributing divisors, the authors propose algorithms to determine whether a supercandidate is a jumping number in different situations. However, due to the unknown correspondence between \(\pi\)-antieffective divisors and integrally closed ideals in higher dimensions, it is not known whether all supercandidates are actual jumping numbers.
The authors also provide examples on how to implement the algorithm.
Reviewer: Fei Ye (New York)

MSC:

14F18 Multiplier ideals
14H20 Singularities of curves, local rings

Citations:

Zbl 1357.14025

References:

[1] Alberich-Carramiñana, M.; Montaner, Ja; Dachs-Cadefau, F., Multiplier ideals in two-dimensional local rings with rational singularities, Mich. Math. J., 65, 2, 287320 (2016) · Zbl 1357.14025 · doi:10.1307/mmj/1465329014
[2] Berkesch, C., Leykin, A.: Algorithms for Bernstein-Sato polynomials and multiplier ideals. In: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 99-106. ACM, New York (2010) · Zbl 1321.68522
[3] Casas-Alvero, E., Singularities of Plane Curves (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0967.14018
[4] Campillo, A.; Gonzalez-Sprinberg, G.; Lejeune-Jalabert, M., Clusters of infinitely near points, Math. Ann., 306, 1, 169-194 (1996) · Zbl 0853.14002 · doi:10.1007/BF01445246
[5] Enriques, F.; Chisini, O., Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche (1915), Bologna: N. Zanichelli, Bologna · Zbl 0009.15904
[6] Ein, L.; Lazarsfeld, R.; Smith, Ke; Varolin, D., Jumping coefficients of multiplier ideals, Duke Math. J., 123, 3, 469-506 (2004) · Zbl 1061.14003 · doi:10.1215/S0012-7094-04-12333-4
[7] Esnault, H.; Viehweg, E., Lectures on Vanishing Theorems, DMV Seminar (1992), Basel: Birkhäuser Verlag, Basel · Zbl 0779.14003
[8] Favre, C.; Jonsson, M., Valuations and multiplier ideals, J. Am. Math. Soc., 18, 3, 655-684 (2005) · Zbl 1075.14001 · doi:10.1090/S0894-0347-05-00481-9
[9] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics (1977), New York: Springer, New York · Zbl 0367.14001
[10] Heisuke, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Ann. Math. (2), 79, 109-203 (1964) · Zbl 0122.38603 · doi:10.2307/1970486
[11] Heisuke, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. II, Ann. Math., 79, 2, 205-326 (1964) · Zbl 1420.14031 · doi:10.2307/1970547
[12] Howald, Ja, Multiplier ideals of monomial ideals, Trans. Am. Math. Soc., 353, 7, 2665-2671 (2001) · Zbl 0979.13026 · doi:10.1090/S0002-9947-01-02720-9
[13] Kollár, J.: Singularities of pairs, algebraic geometry—Santa Cruz. In: Proceedings of Symposia in Pure Mathematics, vol. 62, pp. 221-287. American Mathematical Society, Providence, RI (1995) · Zbl 0905.14002
[14] Laufer, Hb, On rational singularities, Am. J. Math., 94, 597-608 (1972) · Zbl 0251.32002 · doi:10.2307/2374639
[15] Lazarsfeld, R., Positivity in Algebraic Geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete (2004), Berlin: Springer, Berlin · Zbl 1093.14500
[16] Libgober, A.S.: Alexander invariants of plane algebraic curves, singularities, part 2 (Arcata, Calif., 1981). In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 135-143. American Mathematical Society, Providence, RI (1983) · Zbl 0536.14009
[17] Lipman, J., Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 36, 195-279 (1969) · Zbl 0181.48903 · doi:10.1007/BF02684604
[18] Lazarsfeld, R.; Lee, K., Local syzygies of multiplier ideals, Invent. Math., 167, 2, 409-418 (2007) · Zbl 1114.13013 · doi:10.1007/s00222-006-0019-9
[19] Loeser, F.; Vaquié, M., Le polynôme d’Alexander d’une courbe plane projective, Topology, 29, 2, 163-173 (1990) · Zbl 0743.14013 · doi:10.1016/0040-9383(90)90005-5
[20] Lipman, J.; Watanabe, K., Integrally closed ideals in two-dimensional regular local rings are multiplier ideals, Math. Res. Lett., 10, 4, 423-434 (2003) · Zbl 1049.13003 · doi:10.4310/MRL.2003.v10.n4.a2
[21] Reguera, A-J, Curves and proximity on rational surface singularities, J. Pure Appl. Algebra, 122, 1-2, 107-126 (1997) · Zbl 0905.14018 · doi:10.1016/S0022-4049(96)00069-2
[22] Shibuta, T., Algorithms for computing multiplier ideals, J. Pure Appl. Algebra, 215, 12, 2829-2842 (2011) · Zbl 1233.14015 · doi:10.1016/j.jpaa.2011.04.002
[23] Smith, Ke; Thompson, Hm, Irrelevant Exceptional Divisors for Curves on a Smooth Surface, Algebra, Geometry and Their Interactions, Contemporary Mathematics, 245-254 (2007), Providence: American Mathematical Society, Providence · Zbl 1141.14004
[24] Tucker, K., Integrally closed ideals on log terminal surfaces are multiplier ideals, Math. Res. Lett., 16, 5, 903-908 (2009) · Zbl 1192.14016 · doi:10.4310/MRL.2009.v16.n5.a12
[25] Tucker, K., Jumping numbers on algebraic surfaces with rational singularities, Trans. Am. Math. Soc., 362, 6, 3223-3241 (2010) · Zbl 1194.14026 · doi:10.1090/S0002-9947-09-04956-3
[26] Vaquié, M., Irrégularité des revêtements cycliques des surfaces projectives non singulières, Am. J. Math., 114, 6, 1187-1199 (1992) · Zbl 0814.14014 · doi:10.2307/2374758
[27] Vaquié, M., Irrégularité des revêtements cycliques, Singularities (Lille, 1991), London Mathematical Society Lecture Note Series, 383-419 (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0840.14005
[28] Veys, W., Congruences for numerical data of an embedded resolution, Compos. Math., 80, 2, 151-169 (1991) · Zbl 0764.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.