Skip to main content
Log in

Computing jumping numbers in higher dimensions

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The aim of this paper is to generalize the algorithm to compute jumping numbers on rational surfaces described in Alberich-Carramiñana et al. (Mich Math J 65(2):287320, 2016) to varieties of dimension at least 3. Therefore, we introduce the notion of \(\pi \)-antieffective divisors, generalizing antinef divisors. Using these divisors, we present a way to find a small subset of the ‘classical’ candidate jumping numbers of an ideal, containing all the jumping numbers. Moreover, many of these numbers are automatically jumping numbers, and in many other cases, it can be easily checked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberich-Carramiñana, M., Montaner, J.A., Dachs-Cadefau, F.: Multiplier ideals in two-dimensional local rings with rational singularities. Mich. Math. J. 65(2), 287320 (2016)

    Article  MathSciNet  Google Scholar 

  2. Berkesch, C., Leykin, A.: Algorithms for Bernstein–Sato polynomials and multiplier ideals. In: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 99–106. ACM, New York (2010)

  3. Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Campillo, A., Gonzalez-Sprinberg, G., Lejeune-Jalabert, M.: Clusters of infinitely near points. Math. Ann. 306(1), 169–194 (1996)

    Article  MathSciNet  Google Scholar 

  5. Enriques, F., Chisini, O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. N. Zanichelli, Bologna (1915)

    MATH  Google Scholar 

  6. Ein, L., Lazarsfeld, R., Smith, K.E., Varolin, D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123(3), 469–506 (2004)

    Article  MathSciNet  Google Scholar 

  7. Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems, DMV Seminar, vol. 20. Birkhäuser Verlag, Basel (1992)

    Book  Google Scholar 

  8. Favre, C., Jonsson, M.: Valuations and multiplier ideals. J. Am. Math. Soc. 18(3), 655–684 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  10. Heisuke, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. (2) 79, 109–203 (1964)

    Article  MathSciNet  Google Scholar 

  11. Heisuke, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. 79(2), 205–326 (1964)

    Article  MathSciNet  Google Scholar 

  12. Howald, J.A.: Multiplier ideals of monomial ideals. Trans. Am. Math. Soc. 353(7), 2665–2671 (2001)

    Article  MathSciNet  Google Scholar 

  13. Kollár, J.: Singularities of pairs, algebraic geometry—Santa Cruz. In: Proceedings of Symposia in Pure Mathematics, vol. 62, pp. 221–287. American Mathematical Society, Providence, RI (1995)

  14. Laufer, H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)

    Article  MathSciNet  Google Scholar 

  15. Lazarsfeld, R.: Positivity in Algebraic Geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49. Springer, Berlin (2004)

    Google Scholar 

  16. Libgober, A.S.: Alexander invariants of plane algebraic curves, singularities, part 2 (Arcata, Calif., 1981). In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 135–143. American Mathematical Society, Providence, RI (1983)

  17. Lipman, J.: Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. 36, 195–279 (1969)

    Article  MathSciNet  Google Scholar 

  18. Lazarsfeld, R., Lee, K.: Local syzygies of multiplier ideals. Invent. Math. 167(2), 409–418 (2007)

    Article  MathSciNet  Google Scholar 

  19. Loeser, F., Vaquié, M.: Le polynôme d’Alexander d’une courbe plane projective. Topology 29(2), 163–173 (1990)

    Article  MathSciNet  Google Scholar 

  20. Lipman, J., Watanabe, K.: Integrally closed ideals in two-dimensional regular local rings are multiplier ideals. Math. Res. Lett. 10(4), 423–434 (2003)

    Article  MathSciNet  Google Scholar 

  21. Reguera, A.-J.: Curves and proximity on rational surface singularities. J. Pure Appl. Algebra 122(1–2), 107–126 (1997)

    Article  MathSciNet  Google Scholar 

  22. Shibuta, T.: Algorithms for computing multiplier ideals. J. Pure Appl. Algebra 215(12), 2829–2842 (2011)

    Article  MathSciNet  Google Scholar 

  23. Smith, K.E., Thompson, H.M.: Irrelevant Exceptional Divisors for Curves on a Smooth Surface, Algebra, Geometry and Their Interactions, Contemporary Mathematics, vol. 448, pp. 245–254. American Mathematical Society, Providence (2007)

    Google Scholar 

  24. Tucker, K.: Integrally closed ideals on log terminal surfaces are multiplier ideals. Math. Res. Lett. 16(5), 903–908 (2009)

    Article  MathSciNet  Google Scholar 

  25. Tucker, K.: Jumping numbers on algebraic surfaces with rational singularities. Trans. Am. Math. Soc. 362(6), 3223–3241 (2010)

    Article  MathSciNet  Google Scholar 

  26. Vaquié, M.: Irrégularité des revêtements cycliques des surfaces projectives non singulières. Am. J. Math. 114(6), 1187–1199 (1992)

    Article  MathSciNet  Google Scholar 

  27. Vaquié, M.: Irrégularité des revêtements cycliques, Singularities (Lille, 1991), London Mathematical Society Lecture Note Series, vol. 201, pp. 383–419. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  28. Veys, W.: Congruences for numerical data of an embedded resolution. Compos. Math. 80(2), 151–169 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Dachs-Cadefau.

Additional information

The first author was supported by a Ph.D. fellowship of the Research Foundation—Flanders (FWO). The second author is partially supported by Spanish Ministerio de Economía y Competitividad MTM2015-69135-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumers, H., Dachs-Cadefau, F. Computing jumping numbers in higher dimensions. manuscripta math. 161, 35–59 (2020). https://doi.org/10.1007/s00229-018-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1069-1

Mathematics Subject Classification

Navigation