×

The role of fundamental solution in potential and regularity theory for subelliptic PDE. (English) Zbl 1338.35010

Citti, Giovanna (ed.) et al., Geometric methods in PDE’s. Cham: Springer (ISBN 978-3-319-02665-7/hbk; 978-3-319-02666-4/ebook). Springer INdAM Series 13, 341-373 (2015).
Summary: In this survey we consider a general Hörmander type operator, represented as a sum of squares of vector fields plus a drift and we outline the central role of the fundamental solution in developing Potential and Regularity Theory for solutions of related PDEs. After recalling the Gaussian behavior at infinity of the kernel, we show some mean value formula on the level set of the fundamental solution, which allow to obtain a comprehensive parallel of the classical Potential Theory. Then we show that a precise knowledge of the fundamental solution leads to global regularity results: estimates at the boundary or on the whole space. Finally in the problem of regularity of non linear differential equations we need an ad hoc modification of the parametrix method, based on the properties of the fundamental solution of an approximating problem.
For the entire collection see [Zbl 1342.35007].

MSC:

35A08 Fundamental solutions to PDEs

References:

[1] Abbondanza, B.; Bonfiglioli, A., On the Dirichlet problem and the inverse mean value theorem for a class of divergence form operators, J. Lond. Math. Soc., 87, 321-346 (2013) · Zbl 1266.31004 · doi:10.1112/jlms/jds050
[2] Armitage, D. H.; Gardiner, S. J., Classical Potential Theory (2001), Springer, London: Springer Monographs in Mathematics, Springer, London · Zbl 0972.31001 · doi:10.1007/978-1-4471-0233-5
[3] August, J.; Zucker, S., Sketches with curvature: the curve indicator random field and markov processes, IEEE Trans. Pattern Anal. Mach. Intell., 25, 4, 387-400 (2003) · doi:10.1109/TPAMI.2003.1190567
[4] Barucci, E.; Polidoro, S.; Vespri, V., Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11, 475-497 (2001) · Zbl 1034.35166 · doi:10.1142/S0218202501000945
[5] Battaglia, E.; Bonfiglioli, A., Normal families of functions for subelliptic operators and the theorems of Montel and Koebe, J. Math. Anal. Appl., 409, 1-12 (2014) · Zbl 1325.35011 · doi:10.1016/j.jmaa.2013.06.062
[6] Beckenbach, E. F.; Radó, T., Subharmonic functions and minimal surfaces, Trans. Am. Math. Soc., 35, 648-661 (1933) · Zbl 0007.12906 · doi:10.1090/S0002-9947-1933-1501707-8
[7] Bedford, E.; Gaveau, B., Hypersurfaces with bounded Levi form, Indiana Univ. J., 27, 5, 867-873 (1978) · Zbl 0365.32011 · doi:10.1512/iumj.1978.27.27058
[8] Bedford, E.; Klingenberg, W., On the envelope of holomorphy of a 2-sphere in \(\mathbb{C}^2 \), J. Am. Math. Soc., 4, 3, 623-646 (1991) · Zbl 0736.32009
[9] Blaschke, W., Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials, Leipz. Ber., 68, 3-7 (1916) · JFM 46.0742.01
[10] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ., 81, 637-654 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[11] Bonfiglioli, A.; Lanconelli, E., Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105, 111-124 (2001) · Zbl 1016.35014 · doi:10.1007/PL00005872
[12] Bonfiglioli, A.; Lanconelli, E., Maximum principle on unbounded domains for sub-Laplacians: a potential theory approach, Proc. Am. Math. Soc., 130, 2295-2304 (2002) · Zbl 1165.35331 · doi:10.1090/S0002-9939-02-06569-3
[13] Bonfiglioli, A.; Lanconelli, E., Subharmonic functions on Carnot groups, Math. Ann., 325, 97-122 (2003) · Zbl 1017.31003 · doi:10.1007/s00208-002-0371-z
[14] Bonfiglioli, A.; Lanconelli, E., Dirichlet problem with L^p-boundary data in contractible domains of Carnot groups, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 579-610 (2006) · Zbl 1170.35429
[15] Bonfiglioli, A.; Lanconelli, E., Gauge functions, Eikonal equations and Bôcher’s theorem on stratified Lie groups. Calc. Var. Partial Differ. Equ., 30, 277-291 (2007) · Zbl 1137.31003 · doi:10.1007/s00526-006-0087-0
[16] Bonfiglioli, A.; Lanconelli, E., A new characterization of convexity in free Carnot groups, Proc. Am. Math. Soc., 140, 3263-3273 (2012) · Zbl 1272.31009 · doi:10.1090/S0002-9939-2012-11180-3
[17] Bonfiglioli, A.; Lanconelli, E., Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc., 15, 387-441 (2013) · Zbl 1270.31002 · doi:10.4171/JEMS/364
[18] Bonfiglioli, A.; Uguzzoni, F., Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., 16, 403-415 (2004) · Zbl 1065.35102 · doi:10.1515/form.2004.018
[19] Bonfiglioli, A.; Uguzzoni, F., A note on lifting of Carnot groups, Rev. Mat. Iberoam., 21, 3, 1013-1035 (2005) · Zbl 1100.35029 · doi:10.4171/RMI/443
[20] Bonfiglioli, A.; Uguzzoni, F., Harnack inequality for non-divergence form operators on stratified groups, Trans. Am. Math. Soc., 359, 6, 2463-2481 (2007) · Zbl 1113.35032 · doi:10.1090/S0002-9947-07-04273-0
[21] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differ. Equ., 7, 1153-1192 (2002) · Zbl 1036.35061
[22] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Fundamental solutions for non-divergence form operators on stratified groups, Trans. Am. Math. Soc., 356, 7, 2709-2737 (2004) · Zbl 1072.35011 · doi:10.1090/S0002-9947-03-03332-4
[23] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics, vol. 26. New York, Springer (2007) · Zbl 1128.43001
[24] Bonfiglioli, A.; Lanconelli, E.; Tommasoli, A., Convexity of average operators for subsolutions to subelliptic equations, Anal. PDE, 7, 2, 345-373 (2014) · Zbl 1302.35133 · doi:10.2140/apde.2014.7.345
[25] Bony, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19, 277-304 (1969) · Zbl 0176.09703 · doi:10.5802/aif.319
[26] Boscain, U.; Polidoro, S., Gaussian estimates for hypoelliptic operators via optimal control, Rend. Lincei Mat. Appl., 18, 343-349 (2007)
[27] Bramanti, M., Singular integrals in nonhomogeneous spaces: L^2 and L^p continuity from Hölder estimates, Rev. Mat. Iberoam., 26, 1, 347-366 (2010) · Zbl 1205.42011 · doi:10.4171/RMI/604
[28] Bramanti, M., Brandolini, L., Lanconelli, E., Uguzzoni, F.: Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities. Mem. Am. Math. Soc. 204(961), vi+123 pp. (2010) · Zbl 1218.35001
[29] Bramanti, M.; Cupini, G.; Lanconelli, E.; Priola, E., Global L^p estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266, 4, 789-816 (2010) · Zbl 1206.35051 · doi:10.1007/s00209-009-0599-3
[30] Bramanti, M.; Brandolini, L.; Pedroni, M., Basic properties of nonsmooth Hörmander’s vector fields and Poincaré’s inequality, Forum Math., 25, 4, 703-769 (2013) · Zbl 1357.46027
[31] Bramanti, M.; Cupini, G.; Lanconelli, E., Global L^p estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients Math, Nach., 286, 1087-1101 (2013) · Zbl 1294.35008 · doi:10.1002/mana.201200189
[32] Bramanti, M., Brandolini, L., Manfredini, M., Pedroni, M.: Fundamental solutions and local solvability for nonsmooth Hr̈mander’s operators. Mem. Amer. Math Soc. · Zbl 1383.35004
[33] Capogna, L., Danielli, D., Garofalo, N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type. 226(1), 147-154 (1997) · Zbl 0893.35023
[34] Capogna, L.; Citti, G.; Manfredini, M., Regularity of non-characteristic minimal graphs in the Heisenberg group H1, Indiana Univ. Math. J., 58, 5, 2115-2160 (2009) · Zbl 1182.35087 · doi:10.1512/iumj.2009.58.3673
[35] Capogna, L.; Citti, G.; Manfredini, M., Uniform Gaussian bounds for sub elliptic heat kernels and an application to the total variation flow of graphs over Carnot groups, Anal. Geom. Metric Spaces, 1, 233-234 (2013)
[36] Chapman, S.; Cowling, T. G., The Mathematical Theory of Nonuniform Gases (1990), Cambridge: Cambridge University Press, Cambridge
[37] Cinti, C.; Polidoro, S., Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl., 338, 946-969 (2008) · Zbl 1152.35062 · doi:10.1016/j.jmaa.2007.05.059
[38] Cinti, C.; Menozzi, S.; Polidoro, S., Two-sided bounds for degenerate processes with densities supported in subsets of R^N, Potential Anal., 42, 39-98 (2015) · Zbl 1317.35015 · doi:10.1007/s11118-014-9424-7
[39] Citti, G., A comparison theorem for the Levi equation, Rend. Mat. Accad. Lincei, 4, 207-212 (1993) · Zbl 0822.35009 · doi:10.1007/BF03001575
[40] Citti, G., C^∞ regularity of solutions of the Levi equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 517-534 (1998) · Zbl 0921.35033 · doi:10.1016/S0294-1449(98)80033-4
[41] Citti, G.; Sarti, A., A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vis., 24, 3, 307-326 (2006) · Zbl 1478.92100 · doi:10.1007/s10851-005-3630-2
[42] Citti, G.; Garofalo, N.; Lanconelli, E., Harnack’s inequality for sum of squares of vector fields plus a potential, Am. J. Math., 115, 699-734 (1993) · Zbl 0795.35018 · doi:10.2307/2375077
[43] Citti, G.; Pascucci, A.; Polidoro, S., On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance, Differ. Integral Equ., 14, 6, 701-738 (2001) · Zbl 1013.35046
[44] Citti, G.; Lanconelli, E.; Montanari, A., Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math., 188, 1, 87-128 (2002) · Zbl 1030.35084 · doi:10.1007/BF02392796
[45] Citti, G., Manfredini, M., Serra Cassano, F., Pinamonti, A.: Poincaré-type inequality for intrinsic Lipschitz continuous vector fields in the Heisenberg group. J. Math. Pures Appl. · Zbl 1337.43005
[46] Coifman, R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971) · Zbl 0224.43006
[47] Constantinescu, C.; Cornea, A., Potential Theory on Harmonic Spaces (1972), Berlin: Springer, Berlin · Zbl 0248.31011 · doi:10.1007/978-3-642-65432-9
[48] Corielli, F.; Foschi, P.; Pascucci, A., Parametrix approximation of diffusion transition densities, SIAM J. Financ. Math., 1, 833-867 (2010) · doi:10.1137/080742336
[49] Da Lio, F.; Montanari, A., Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 1, 1-28 (2006) · Zbl 1293.35107 · doi:10.1016/j.anihpc.2004.10.006
[50] Danielli, D.; Garofalo, N.; Nhieu, D. M.; Pauls, S. D., Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group H1, J. Differ. Geom., 81, 251-295 (2009) · Zbl 1161.53024
[51] Di Francesco, M.; Pascucci, A., On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express, 3, 77-116 (2005) · Zbl 1085.35086 · doi:10.1155/AMRX.2005.77
[52] Di Francesco, M.; Polidoro, S., Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form. Adv. Differ. Equ., 11, 11, 1261-1320 (2006) · Zbl 1153.35312
[53] Escobedo, M.; Vazquez, J. L.; Zuazua, E., Entropy solutions for diusion-convection equations with partial diffusivity, Trans. Am. Math. Soc., 343, 829-842 (1994) · Zbl 0803.35084 · doi:10.1090/S0002-9947-1994-1225573-2
[54] Fabes, E. B.; Garofalo, N., Mean value properties of solutions to parabolic equations with variable coefficients, J. Math. Anal. Appl., 121, 2, 305-316 (1987) · Zbl 0627.35041 · doi:10.1016/0022-247X(87)90249-6
[55] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) · Zbl 0312.35026 · doi:10.1007/BF02386204
[56] Foschi, P.; Pascucci, A., Calibration of a path-dependent volatility model: empirical tests, Comput. Stat. Data Anal., 53, 2219-2235 (2009) · Zbl 1453.62091 · doi:10.1016/j.csda.2008.10.042
[57] Franchi, B., Lanconelli, E.: Une métrique associée à une classe d’opérateurs elliptiques dégénérés. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, 105-114 (1984). Conference on Linear Partial and Pseudodifferential Operators, Torino (1982) · Zbl 0553.35033
[58] Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 523-541 (1983) · Zbl 0552.35032
[59] Franchi, B.; Lu, G.; Wheeden, R. L., A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Int. Math. Res. Not., 1, 1-14 (1996) · Zbl 0856.43006 · doi:10.1155/S1073792896000013
[60] Garofalo, N.; Lanconelli, E., Wiener’s criterion for parabolic equations with variable coefficients and its consequences, Trans. Am. Math. Soc., 308, 811-836 (1988) · Zbl 0698.31007
[61] Garofalo, N.; Lanconelli, E., Asymptotic behavior of fundamental solutions and potential theory of parabolic operator with variable coefficients, Math. Ann., 283, 211-239 (1989) · Zbl 0638.35003 · doi:10.1007/BF01446432
[62] Gutierrez, C.; Lanconelli, E.; Montanari, A., Nonsmooth Hypersurfaces with Smooth Levi Curvature, Nonlinear Anal. Theory Methods Appl., 76, 115-121 (2013) · Zbl 1255.35115 · doi:10.1016/j.na.2012.08.008
[63] Hobson, D. G.; Rogers, L. C.G., Complete models with stochastic volatility, Math. Financ., 8, 27-48 (1998) · Zbl 0908.90012 · doi:10.1111/1467-9965.00043
[64] Hoh, W.; Jacob, N., Remarks on mean value properties of solutions of second order differential operators, Expo. Math., 9, 367-377 (1991) · Zbl 0755.35005
[65] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[66] Jerison, D. S.; Sánchez-Calle, A., Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J., 35, 4, 835-854 (1986) · Zbl 0639.58026 · doi:10.1512/iumj.1986.35.35043
[67] Kogoj, A.; Lanconelli, E., An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., 1, 51-80 (2004) · Zbl 1150.35354 · doi:10.1007/s00009-004-0004-8
[68] Kogoj, A.; Tralli, G., Blaschke, Privaloff, Reade and Saks Theorems for diffusion equations on Lie groups. Potential Anal., 38, 4, 1103-1122 (2013) · Zbl 1267.35242
[69] Kogoj, A.; Lanconelli, E.; Tralli, G., An inverse mean value property for evolution equations, Adv. Differ. Equ., 19, 7-8, 783-804 (2014) · Zbl 1297.35014
[70] Kolmogorov, A.: Zufllige Bewegungen. (Zur Theorie der Brownschen Bewegung.). Ann. Math. II. 35, 116-117 (1934) · Zbl 0008.39906
[71] Kusuoka, S., Stroock, D.: Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator. Ann. Math. (2) 127(1), 165-189 (1988) · Zbl 0699.35025
[72] Lanconelli, E., Potato Kugel for Sub-Laplacians, Isr. J. Math., 194, 277-283 (2013) · Zbl 1272.31011 · doi:10.1007/s11856-012-0060-x
[73] Lanconelli, E.; Morbidelli, D., On the Poincaré inequality for vector fields, Ark. Mat., 38, 2, 327-342 (2000) · Zbl 1131.46304 · doi:10.1007/BF02384323
[74] Lanconelli, E., Pascucci, A.: On the fundamental solution for hypoelliptic second order partial differential equations with non-negative characteristic form. Ricerche Mat. 48(1), 81-106, 0035-5038 (1999) · Zbl 0965.35005
[75] Lanconelli, E.; Pascucci, A., Superparabolic functions related to second order hypoelliptic operators, Potential Anal., 11, 303-323 (1999) · Zbl 0940.35054 · doi:10.1023/A:1008689803518
[76] Lanconelli, E.; Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Semin. Mat. Univ. Politecnico Torino, 52, 29-63 (1994) · Zbl 0811.35018
[77] Lanconelli, E.; Uguzzoni, F., Potential analysis for a class of diffusion equations: a Gaussian bounds approach, J. Differ. Equ., 248, 2329-2367 (2010) · Zbl 1191.35104 · doi:10.1016/j.jde.2010.01.007
[78] Lunardi, A.: Schauder estimates for a class of parabolic operators with unbounded coefficients in R^n. Ann. Scuola Norm. Sup. Pisa (4) 24(1), 133-164 (1997) · Zbl 0887.35062
[79] Manfredini, M., The Dirichlet problem for a class of ultraparabolic equations, Adv. Differ. Equ., 2, 831-866 (1997) · Zbl 1023.35518
[80] Martino, V.; Montanari, A., Integral formulas for a class of curvature PDE’s and applications to isoperimetric inequalities and to symmetry problems, Forum Math., 22, 253-265 (2010) · doi:10.1515/forum.2010.014
[81] Montanari, A.: On the regularity of solutions of the prescribed Levi curvature equation in several complex variables. Nonlinear elliptic and parabolic equations and systems (Pisa, 2002). Commun. Appl. Nonlinear Anal. 10(2), 63-71 (2003) · Zbl 1086.35049
[82] Montanari, A.: Hölder a priori estimates for second order tangential operators on CR manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) II, 345-378 (2003) · Zbl 1170.35433
[83] Montanari, A.; Lascialfari, F., The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions, J. Geom. Anal., 14, 2, 331-353 (2004) · Zbl 1217.35082 · doi:10.1007/BF02922076
[84] Montanari, A.; Lanconelli, E., Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differ. Equ., 202, 2, 306-331 (2004) · Zbl 1161.35414 · doi:10.1016/j.jde.2004.03.017
[85] Montanari, A., Morbidelli, D.: Step-s involutive families of vector fields, their orbits and the Poincaré inequality. J. Math. Pures Appl. (9) 99(4), 375-394 (2013) · Zbl 1287.53027
[86] Monti, R.; Serra Cassano, F.; Vittone, D., A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group, Boll. Unione Mat. Ital., 9, 709-727 (2009) · Zbl 1204.53048
[87] Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and Its Applications (West Lafayette, IN, 1990), pp. 491-506. Springer, New York (1994) · Zbl 0798.53003
[88] Nagel, A.; Stein, E. M.; Wainger, S., Balls and metrics defined by vector fields I: basic properties, Acta Math., 155, 130-147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[89] Negrini, P., Scornazzani, V.: Superharmonic functions and regularity of boundary points for a class of elliptic parabolic partial differential operators. Boll. Unione Mat. Ital. (6) 3, 85-107 (1984) · Zbl 0552.35035
[90] Pascucci, A.: PDE and Martingale Methods in Option Pricing. In: Bocconi Springer Series, vol. 2. Springer, Milan/Bocconi University Press, Milan (2011) · Zbl 1214.91002
[91] Pascucci, A.; Polidoro, S., Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators, Trans. Am. Math. Soc., 358, 11, 4873-4893 (2006) · Zbl 1172.35339 · doi:10.1090/S0002-9947-06-04050-5
[92] Pini, B., Sulle equazioni a derivate parziali lineari del secondo ordine in due variabili di tipo parabolico, Ann. Mat. Pura Appl., 32, 179-204 (1951) · Zbl 0044.31602 · doi:10.1007/BF02417958
[93] Privaloff, I.: Sur le fonctions harmoniques. Rec. Math. Moscou (Mat. Sbornik) 32, 464-471 (1925) · JFM 51.0363.02
[94] Polidoro, S., A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations, Arch. Ration. Mech. Anal., 137, 321-340 (1997) · Zbl 0887.35086 · doi:10.1007/s002050050031
[95] Polidoro, S., On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type, Matematiche (Catania), 49, 53-105 (1994) · Zbl 0845.35059
[96] Rios, C.; Sawyer, E. T.; Wheeden, R. L., Regularity of subelliptic Monge-Ampre equations, Adv. Math., 217, 3, 967-1026 (2008) · Zbl 1140.35008 · doi:10.1016/j.aim.2007.07.004
[97] Rothschild, L.; Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 247-320 (1976) · Zbl 0346.35030 · doi:10.1007/BF02392419
[98] Sawyer, E. T.; Wheeden, R. L., Regularity of degenerate Monge-Ampère and prescribed Gaussian curvature equations in two dimensions, Potential Anal., 24, 3, 267-301 (2006) · Zbl 1097.35035 · doi:10.1007/s11118-005-0915-4
[99] Shatyro, Y.I.: Smoothness of solutions of certain singular second order equations. Mat. Zametki 10, 101-111 (1971); English Translation Math. Notes 10, 484-489 (1971) · Zbl 0228.35044
[100] Slodkowski, Z.; Tomassini, G., Weak solutions for the Levi equation and envelope of holomorphy, J. Funct. Anal., 101, 392-407 (1991) · Zbl 0744.35015 · doi:10.1016/0022-1236(91)90164-Z
[101] Tomassini, G., Geometric properties of solutions of the Levi equation, Ann. Mat. Pura Appl., 152, 4, 331-344 (1988) · Zbl 0681.35017 · doi:10.1007/BF01766155
[102] Tralli, G., Uguzzoni, F.: Wiener criterion for X-elliptic operators. Arxiv 1408.6789 · Zbl 1377.35117
[103] Uguzzoni, F.: Cone criterion for non-divergence equations modeled on Hörmander vector fields. In: Subelliptic PDE’s and Applications to Geometry and Finance. Lect. Notes Semin. Interdiscip. Mat, vol. 6, pp. 227-241. Semin. Interdiscip. Mat. (S.I.M.), Potenza (2007) · Zbl 1165.35007
[104] Uguzzoni, F.: Estimates of the Green function for X-elliptic operators. Math. Ann. 361(1-2), 169-190 (2014) Math. Ann. (2014) · Zbl 1311.35071
[105] Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. In: Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992) · Zbl 0813.22003
[106] Watson, N. A., A theory of subtemperatures in several variables, Proc. Lond. Math. Soc., 26, 385-417 (1973) · Zbl 0253.35045 · doi:10.1112/plms/s3-26.3.385
[107] Williams, L., Jacobs, D.: Stochastic completion fields: a neural model of illusory contour shape and salience. In: Proceedings of ICCV, pp. 408-415 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.