×

A modified phase field approximation for mean curvature flow with conservation of the volume. (English) Zbl 1235.49082

Summary: This paper is concerned with the motion of a time-dependent hypersurface \(\partial\Omega(t)\) in \(\mathbb{R}^d\) that evolves with a normal velocity \[ V_n=\kappa+g, \] where \(\kappa\) is the mean curvature of \(\partial\Omega(t)\), and \(g\) is an external forcing term. Phase field approximation of this motion leads to the Allen-Cahn equation \[ \partial_tu=\Delta u-\frac{1}{\varepsilon^2}W'(u)+\frac{1}{\varepsilon}c_Wg, \] where \(\varepsilon\) is an approximation parameter, \(W\) a double well potential and \(c_W\) a constant that depends only on \(W\). We study here a modified version of this equation \[ \partial_tu=\Delta u-\frac{1}{\varepsilon^2}W'(u)+\frac{1}{\varepsilon}\sqrt{2W(u)}g \] and we prove its convergence to the same geometric motion. We then make use of this modified equation in the context of mean curvature flow with conservation of the volume, and we show that it has better volume-preserving properties than the traditional nonlocal Allen-Cahn equation.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
35B99 Qualitative properties of solutions to partial differential equations
35K99 Parabolic equations and parabolic systems

References:

[1] Ambrosio, Calculus of Variations and Partial Differential Equations (Pisa, 1996) pp 5– (2000) · doi:10.1007/978-3-642-57186-2_2
[2] Barles, Mathématiques and Applications (Berlin) [Mathematics and Applications ] (1994)
[3] Evans, Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics 45 (9) pp 1097– (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[4] Modica, Un esempio di {\(\Gamma\)}–convergenza, Bollettino Unione Matematica Italiana B (5) 14 (1) pp 285– (1977)
[5] Modica, Il limite nella {\(\Gamma\)}-convergenza di una famiglia di funzionali ellittici, Bollettino Unione Matematica Italiana A (5) 14 (3) pp 526– (1977)
[6] Bellettini, Variational approximation of functionals with curvatures and related properties, Journal of Convex Analysis 4 (1) pp 91– (1997) · Zbl 0882.49013
[7] Allen, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica 27 pp 1085– (1979) · doi:10.1016/0001-6160(79)90196-2
[8] de Mottoni, Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society 347 pp 1533– (1995) · Zbl 0840.35010 · doi:10.2307/2154960
[9] Chen, Generation and propagation of interfaces for reaction-diffusion equations, Journal of Differential Equations 96 (1) pp 116– (1992) · Zbl 0765.35024 · doi:10.1016/0022-0396(92)90146-E
[10] Bellettini, Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations 8 (4) pp 735– (1995) · Zbl 0820.49019
[11] Simon, Differentiation with respect to the domain in boundary value problems, Numerical Functional Analysis and Optimization 2 (7-8) pp 649– (1980) · Zbl 0471.35077 · doi:10.1080/01630563.1980.10120631
[12] Huisken, The volume preserving mean curvature flow, Journal für die Reine und Angewandte Mathematik 382 pp 35– (1987) · Zbl 0621.53007 · doi:10.1515/crll.1987.382.35
[13] Rubinstein, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics 48 (3) pp 249– (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[14] Bronsard, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM Journal on Mathematical Analysis 28 (4) pp 769– (1997) · Zbl 0874.35009 · doi:10.1137/S0036141094279279
[15] Golovaty, The volume-preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Quarterly of Applied Mathematics 55 (2) pp 243– (1997) · Zbl 0878.35059
[16] Chen X Hilhorst D Logak E 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0902.3625
[17] Chen, Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term, Nonlinear Analysis 28 (7) pp 1283– (1997) · Zbl 0883.35013 · doi:10.1016/S0362-546X(97)82875-1
[18] Cardaliaguet, On front propagation problems with nonlocal terms, Advances in Difference Equations 5 (1-3) pp 213– (2000) · Zbl 1029.53081
[19] Ward, Metastable bubble solutions for the Allen-Cahn equation with mass conservation, SIAM Journal on Applied Mathematics 56 (5) pp 1247– (1996) · Zbl 0870.35011 · doi:10.1137/S0036139995282918
[20] Stafford, The dynamics of drops and attached interfaces for the constrained Allen-Cahn equation, European Journal of Applied Mathematics 12 (1) pp 1– (2001) · Zbl 0988.76095 · doi:10.1017/S0956792501004272
[21] Conti, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Physical Review E 65 (4) (2002) · doi:10.1103/PhysRevE.65.046117
[22] Turco1, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model, ESAIM: M2AN 44 (6) pp 1027– (2009) · Zbl 1375.76052 · doi:10.1051/m2an/2009016
[23] Biben, Phase-field approach to three-dimensional vesicle dynamics, Physical Review E 72 (4) (2005) · doi:10.1103/PhysRevE.72.041921
[24] Garcke, Second order phase field asymptotics for multi-component systems, Interfaces Free Bound 8 (2) pp 131– (2006) · Zbl 1106.35116 · doi:10.4171/IFB/138
[25] Caginalp, Numerical tests of a phase field model with second order accuracy, SIAM Journal on Applied Mathematics 68 (6) pp 1518– (2008) · Zbl 1151.80006 · doi:10.1137/070680965
[26] Garcke, Allen-Cahn systems with volume constraints, Mathematical Models and Methods in Applied Sciences 18 pp 1347– (2008) · Zbl 1147.49036 · doi:10.1142/S0218202508003066
[27] Nestler, Phase-field model for multiphase systems with preserved volume fractions, Physical Review E 78 (1) (2008) · doi:10.1103/PhysRevE.78.011604
[28] Deckelnick, Computation of geometric partial differential equations and mean curvature flow, Acta Numerica 14 pp 139– (2005) · Zbl 1113.65097 · doi:10.1017/S0962492904000224
[29] Paolini, A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem, Mathematics of Computers 66 pp 45– (1997) · Zbl 0854.35008 · doi:10.1090/S0025-5718-97-00771-0
[30] Chen, Applications of semi-implicit Fourier-spectral method to phase field equations, Computer Physics Communications 108 pp 147– (1998) · Zbl 1017.65533 · doi:10.1016/S0010-4655(97)00115-X
[31] Chen, Convergence of numerical solutions to the Allen-Cahn equation, Applicable Analysis 69 pp 47– (1998) · Zbl 0992.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.