×

A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem. (English) Zbl 0854.35008

Summary: Solutions of the so-called prescribed curvature problem \(\min_{A\subseteq \Omega} \mathcal{P}_\Omega(A) - \int_A g(x)\), \(g\) being the curvature field, are approximated via a singularly perturbed elliptic PDE of bistable type. For nondegenerate relative minimizers \(A \subset \subset \Omega\) we prove an \( \mathcal{O}(\epsilon^2 {}\log \epsilon {}^2)\) error estimate (where \(\epsilon\) stands for the perturbation parameter), and show that this estimate is quasi-optimal. The proof is based on the construction of accurate barriers suggested by formal asymptotics. This analysis is next extended to a finite element discretization of the PDE to prove the same error estimate for discrete minima.

MSC:

35B25 Singular perturbations in context of PDEs
35J60 Nonlinear elliptic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35A35 Theoretical approximation in context of PDEs
49Q05 Minimal surfaces and optimization
Full Text: DOI

References:

[1] S.M. Allen and J.W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall. 27 (1979), 1085-1095
[2] G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), no. 2, 439 – 469. · Zbl 0785.35049 · doi:10.1137/0331021
[3] G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations 8 (1995), no. 4, 735 – 752. · Zbl 0820.49019
[4] Giovanni Bellettini, Maurizio Paolini, and Claudio Verdi, \Gamma -convergence of discrete approximations to interfaces with prescribed mean curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1 (1990), no. 4, 317 – 328 (English, with Italian summary). · Zbl 0721.49038
[5] G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of geometrical type problems related to calculus of variations, Calcolo 27 (1990), no. 3-4, 251 – 278 (1991). · Zbl 0733.49039 · doi:10.1007/BF02575797
[6] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243 – 268. · Zbl 0183.25901 · doi:10.1007/BF01404309
[7] Lia Bronsard and Robert V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991), no. 2, 211 – 237. · Zbl 0735.35072 · doi:10.1016/0022-0396(91)90147-2
[8] Xinfu Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations 96 (1992), no. 1, 116 – 141. · Zbl 0765.35024 · doi:10.1016/0022-0396(92)90146-E
[9] Xinfu Chen and Charles M. Elliott, Asymptotics for a parabolic double obstacle problem, Proc. Roy. Soc. London Ser. A 444 (1994), no. 1922, 429 – 445. · Zbl 0814.35044 · doi:10.1098/rspa.1994.0030
[10] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[11] R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume I, Interscience Publishers Inc., New York, 1953. · Zbl 0051.28802
[12] E. De Giorgi, Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari, Nonlinear Analysis. A Tribute in Honour of G. Prodi, S.N.S. Quaderni, Pisa, 1991, pp. 173-187.
[13] Ennio De Giorgi and Tullio Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 6, 842 – 850 (Italian). · Zbl 0339.49005
[14] P. De Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc. 347 (1995), 1533-1589 · Zbl 0840.35010
[15] G. Dziuk and J.E. Hutchinson, On the approximation of unstable parametric minimal surfaces, Calc. Var. Partial Differential Equations 4 (1996), 27-58. CMP 96:09
[16] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), no. 9, 1097 – 1123. · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[17] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[18] Robert Finn, Equilibrium capillary surfaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. · Zbl 0583.35002
[19] Avner Friedman, Variational principles and free-boundary problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. A Wiley-Interscience Publication. · Zbl 0564.49002
[20] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[21] Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. · Zbl 0545.49018
[22] Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. · Zbl 0543.58001
[23] Tom Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), no. 2, 417 – 461. · Zbl 0784.53035
[24] H. Lewy, Aspects of the Calculus of Variations, University of California Press, Berkeley, 1939
[25] Luciano Modica and Stefano Mortola, Un esempio di \Gamma \(^{-}\)-convergenza, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 1, 285 – 299 (Italian, with English summary). · Zbl 0356.49008
[26] Joachim Nitsche, \?_{\infty }-convergence of finite element approximations, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 261 – 274. Lecture Notes in Math., Vol. 606.
[27] Johannes C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, Cambridge University Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value problems; Translated from the German by Jerry M. Feinberg; With a German foreword. · Zbl 0688.53001
[28] Ricardo H. Nochetto, Maurizio Paolini, and Claudio Verdi, Sharp error analysis for curvature dependent evolving fronts, Math. Models Methods Appl. Sci. 3 (1993), no. 6, 711 – 723. · Zbl 0802.65124 · doi:10.1142/S0218202593000369
[29] R. H. Nochetto, M. Paolini, and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 2, 193 – 212. · Zbl 0886.35079
[30] R. H. Nochetto, M. Paolini, and C. Verdi, Quadratic rate of convergence for curvature dependent smooth interfaces: a simple proof, Appl. Math. Lett. 7 (1994), no. 4, 59 – 63. · Zbl 0823.35013 · doi:10.1016/0893-9659(94)90012-4
[31] R. H. Nochetto, M. Paolini, and C. Verdi, Double obstacle formulation with variable relaxation parameter for smooth geometric front evolutions: asymptotic interface error estimates, Asymptotic Anal. 10 (1995), no. 2, 173 – 198. · Zbl 0852.35060
[32] -, A dynamic mesh algorithm for curvature dependent evolving interfaces, J. Comput. Phys. 123 (1996), 296-310. CMP 96:07
[33] M. Paolini and C. Verdi, Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter, Asymptotic Anal. 5 (1992), no. 6, 553 – 574. · Zbl 0757.65078
[34] Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437 – 445. · Zbl 0483.65007
[35] Ridgway Scott, Optimal \?^{\infty } estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681 – 697. · Zbl 0349.65060
[36] James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62 – 105. · Zbl 0181.49702 · doi:10.2307/1970556
[37] Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York-Berlin, 1983. · Zbl 0508.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.