×

Asymptotic analysis of an age-structured predator-prey model with ratio-dependent Holling III functional response and delays. (English) Zbl 1505.92174

Summary: This paper studies the dynamical behavior of a radio-dependent predator-prey model with age structure and two delays. The model is first formulated as an abstract non-densely defined Cauchy problem and the conditions for existence of the positive equilibrium point are derived. Then, through determining the distribution of eigenvalues, the globally asymptotic stability of the boundary equilibrium and the locally asymptotic stability for the positive equilibrium are obtained, respectively. In addition, it is also shown that a non-trivial periodic oscillation phenomenon through Hopf bifurcation appears under some conditions. Finally, some numerical examples are provided to illustrate the obtained results.

MSC:

92D25 Population dynamics (general)
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent pre-dation hypothesis, Ecol. Monogr., 62, 119-142 (1992)
[2] H. R. R. L. R. Akcakaya Arditi Ginzburg, Ratio-dependent prediction: Anabstraction that works, Ecol., 76, 995-1004 (1995)
[3] R. L. R. Arditi Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biol., 139, 311-326 (1989)
[4] R. L. R. H. R. Arditi Ginzburg Akcakaya, Variation in plankton densities among lakes: A case for ratio-dependent models, Amer. Nat., 138, 1287-1296 (1991)
[5] R. H. Arditi Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Econogy, 73, 1544-1551 (1992)
[6] E. Y. Beretta Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonl. Anal., 32, 381-408 (1998) · Zbl 0946.34061 · doi:10.1016/S0362-546X(97)00491-4
[7] J. H. Chen Zhang, The qualitative analysis of two species predator-prey model with Holling’s type Ⅲ functional response, Appl. Math. Mech., 7, 77-86 (1986) · Zbl 0598.92016 · doi:10.1007/BF01896254
[8] S. J. J. Chen Shi Wei, The effect of delay on a diffusive predator-prey systemwith Holling type-Ⅱ predator functional response, Comm. Pure Appl. Anal., 12, 481-501 (2013) · Zbl 1264.35120 · doi:10.3934/cpaa.2013.12.481
[9] J. A. P. S. Chu Ducrot Magal Ruan, Hopf bifurcation in a size structured population dynamic model with random growth, J. Diff. Equ., 247, 956-1000 (2009) · Zbl 1172.35322 · doi:10.1016/j.jde.2009.04.003
[10] J. M. M. Cushing Saleem, A predator prey model with age structure, J. Math. Biol., 14, 231-250 (1982) · Zbl 0501.92018 · doi:10.1007/BF01832847
[11] D. L. DeAngelis, Dynamics of Nutrient Cycling and Food Webs, Springer, Berlin, 2012.
[12] A. P. S. Ducrot Magal Ruan, Projectors on the generalized eigenspaces for partial differential equations with time delay, Inf. Dim. Dyn. Syst., 64, 353-390 (2013) · Zbl 1272.35118 · doi:10.1007/978-1-4614-4523-4_14
[13] A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson’s blowflies as an example, Econogy, 73, 1552-1563 (1992)
[14] J. Li, Dynamics of age-structured predator-prey population models, J. Math. Anal. Appl., 152, 399-415 (1990) · Zbl 0706.92023 · doi:10.1016/0022-247X(90)90073-O
[15] Z. N. Liu Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonl. Science, 25, 937-957 (2015) · Zbl 1332.92058 · doi:10.1007/s00332-015-9245-x
[16] Z. P. S. Liu Magal Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62, 191-222 (2011) · Zbl 1242.34112 · doi:10.1007/s00033-010-0088-x
[17] P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009). · Zbl 1191.35045
[18] P. Magal and S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, Springer-Verlag, New York, 2018. · Zbl 1447.34002
[19] M. H. R. Martcheva Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol., 46, 385-424 (2003) · Zbl 1097.92046 · doi:10.1007/s00285-002-0181-7
[20] A. F. M. A. M. Nindjin Aziz-Alaoui Cadivel, Analysis of a predator-prey model with modified Leslie-Grower and Holling-type Ⅱ schemes with time delay, Nonl. Anal. (RWA), 7, 1104-1118 (2006) · Zbl 1104.92065 · doi:10.1016/j.nonrwa.2005.10.003
[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. · Zbl 0516.47023
[22] H. O. H. M. Qolizadeh Amirabad Rabieimotlagh Mohammadinejad, Permanency in predator-prey models of Leslie type with ratio-dependent simplified Holling type-Ⅳ functional response, Math. Comput. Simulation, 157, 63-76 (2019) · Zbl 1540.92092 · doi:10.1016/j.matcom.2018.09.023
[23] Y. S. Song Yuan, Bifurcation analysis in a predator-prey system with time delay, Nonl. Anal.: (RWA), 7, 265-284 (2006) · Zbl 1085.92052 · doi:10.1016/j.nonrwa.2005.03.002
[24] H. Z. Tang Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40, 726-737 (2016) · Zbl 1446.92025 · doi:10.1016/j.apm.2015.09.015
[25] H. R. Thieme, Convergence results and a Poincar \(\acute{e} \)-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 755-763 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
[26] L. C. M. Wang Dai Zhao, Hopf bifurcation in an age-structured prey-predator model with Holling Ⅲ response function, Math. Biosc. Eng., 18, 3144-3159 (2021) · Zbl 1471.92269 · doi:10.3934/mbe.2021156
[27] W. L. Wang Chen, A predator-prey system with stage structure for predator, Comput. Math. Appl., 33, 83-91 (1997) · doi:10.1016/S0898-1221(97)00056-4
[28] D. W. Xiao Li, Stability and bifurcation in a delayed ratio-dependent predator-prey syste, Proc. Edinburgh Math. Soc., 46, 205-220 (2003) · Zbl 1041.92028 · doi:10.1017/S0013091500001140
[29] X. Z. Zhang Liu, Periodic oscillations in age-structured ratio-dependent predator-prey model with Michaelis-Menten type functional response, Phys. D, 389, 51-63 (2019) · Zbl 1448.34137 · doi:10.1016/j.physd.2018.10.002
[30] X. Z. Zhang Liu, Hopf bifurcation analysis in a predator-prey model with predator-age structure and predator-prey reaction time delay, Appl. Math. Model., 91, 530-548 (2021) · Zbl 1481.92125 · doi:10.1016/j.apm.2020.08.054
[31] J. Zhou, Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type Ⅲ functional response, Nonl. Dynam., 81, 1535-1552 (2015) · Zbl 1348.92139 · doi:10.1007/s11071-015-2088-z
[32] G. Zhu and J. Wei, Global stability and bifurcation analysis of a delayed predator-prey system with prey immigration, Electron. J. Qual. Theory Differ. Equ., 13 (2016), Paper No. 13, 20 pp. · Zbl 1363.34313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.