×

The multiplicative Jordan decomposition in the integral group ring \(\mathbb{Z} [Q_8 \times C_p]\). (English) Zbl 1446.20013

Let us view some notions given in the summary. Each element \(\alpha\) of a finite dimensional algebra \(A\) over a perfect field \(\mathbb{F}\), has a unique additive Jordan decomposition \(\alpha= \alpha_s+\alpha_n\) (here \(\alpha_s\) is a semisimple element, \(\alpha_n\) is a nilpotent element, and \(\alpha_s\alpha_n=\alpha_n \alpha_s\) is fulfilled, too). “Semi simple” means here that \(\alpha_s\) has a minimal polynomial over \(\mathbb{F}\) with no repeated roots in the algebraic closure of \(\mathbb{F}\). If \(\alpha\) is a unit, then \(\alpha^{-1}_s\) exists and \(\alpha_u\) is by definition equal to \(1+ \alpha^{-1}_s\alpha_n\) satisfying \(\alpha_s\alpha_u=\alpha_u \alpha_s\). Then, \(\alpha=\alpha_s\alpha_u\) is the unique multiplicative Jordan decomposition of \(\alpha\). Next, assume \(A=\mathbb{Q}[g]\) and let \(\mathbb{Z}[g]\) be a subring of \(\mathbb{Q}[g]\), the integral group ring \(\mathbb{Z}[g]\). Each unit \(\alpha\) of \(\mathbb{Z}[g]\) has the unique multiplicative Jordan decomposition \(\alpha=\alpha_s \alpha_u\) in \(\mathbb{Q}[g]\). When it happens that for every unit \(\alpha\) of \(\mathbb{Z}[g]\) also the elements \(\alpha_s\) and \(\alpha_u\) are both contained in \(\mathbb{Z}[g]\), then, by definition, \(\mathbb{Z}[g]\) has the multiplicative Jordan decomposition property (MJD).
The author gives in the Introduction a survey of work done regarding the MJD in \(\mathbb{R}[g]\) for an integral domain \(\mathbb{R}\); see the list of references too. He works out explicitly that \(\mathbb{Z}[Q_8\times C_p]\) has the MJD. Here, \(Q_8\) is the quaternion group of order 8, \(C_p\) is a cyclic group of prime order \(p\), where also the multiplicative order of 2 modulo \(p\) is even together with \(p\) being congruent to 2 modulo 4. This “working out” is full of details, as provided in the paper.

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16U60 Units, groups of units (associative rings and algebras)
16S34 Group rings

References:

[1] Arora, S. R.; Hales, A. W.; Passi, I. B.S., The multiplicative Jordan decomposition in group rings, J. Algebra, 209, 533-542 (1998) · Zbl 0919.16021
[2] Giambruno, A.; Sehgal, S. K., Generators of large subgroups of units of integral group rings of nilpotent groups, J. Algebra, 174, 150-156 (1995) · Zbl 0829.16022
[3] Hasse, H., Über die Dichte der Primzahlen \(p\) für die eine vorgegebebe ganzrationale Zahl \(a \neq 0\) von gerader bzw. ungerader Ordnung mod. \(p\) ist, Math. Ann., 166, 19-23 (1966) · Zbl 0139.27501
[4] Hales, A. W.; Passi, I. B.S., Integral group rings with Jordan decomposition, Arch. Math., 57, 21-27 (1991) · Zbl 0696.16004
[5] Hales, A. W.; Passi, I. B.S., Group rings and Jordan decomposition, (Groups, Rings, Group Rings, and Hopf Algebras. Groups, Rings, Group Rings, and Hopf Algebras, Contemp. Math., vol. 688 (2017), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 103-111 · Zbl 1385.16022
[6] Hales, A. W.; Passi, I. B.S.; Wilson, L. E., The multiplicative Jordan decomposition in group rings, II, J. Algebra, 316, 109-132 (2007) · Zbl 1144.16020
[7] Hales, A. W.; Passi, I. B.S.; Wilson, L. E., Corrigendum to “The multiplicative Jordan decomposition in group rings, II” [J. Algebra 316 (1) (2007) 109-132], J. Algebra, 371, 665-666 (2012) · Zbl 1269.16018
[8] Liu, C.-H.; Passman, D. S., Multiplicative Jordan decomposition in group rings of 3-groups, J. Algebra Appl., 8, 4, 505-519 (2009) · Zbl 1185.20002
[9] Liu, C.-H.; Passman, D. S., Multiplicative Jordan decomposition in group rings of \(2, 3\)-groups, J. Algebra Appl., 9, 3, 483-492 (2010) · Zbl 1205.16019
[10] Liu, C.-H.; Passman, D. S., Multiplicative Jordan decomposition in group rings with a Wedderburn component of degree 3, J. Algebra, 388, 203-218 (2013) · Zbl 1293.16023
[11] Liu, C.-H.; Passman, D. S., Multiplicative Jordan decomposition in group rings of 3-groups, II, Comm. Algebra, 42, 6, 2633-2639 (2014) · Zbl 1296.16024
[12] Odoni, R. W.K., A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory, 13, 303-319 (1981) · Zbl 0471.10031
[13] Parmenter, M. M., Multiplicative Jordan decomposition in integral group rings of groups of order 16, Comm. Algebra, 30, 10, 4789-4797 (2002) · Zbl 1018.20005
[14] Polcino Milies, C.; Sehgal, S. K., An Introduction to Group Rings, Algebras and Applications, vol. 1 (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0997.20003
[15] Sehgal, S. K., Topics in Group Rings, Monographs and Textbooks in Pure and Applied Math., vol. 50 (1978), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0411.16004
[16] Sehgal, S. K., Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Math., vol. 69 (1993), Longman Scientific & Technical: Longman Scientific & Technical Harlow, copublished in the United States with John Wiley & Sons, Inc., New York. With an appendix by Al Weiss · Zbl 0803.16022
[17] Wang, X.-L.; Zhou, Q.-X., Multiplicative Jordan decomposition in integral group ring of group \(K_8 \times C_5\), Commun. Math. Res., 33, 1, 64-72 (2017) · Zbl 1389.16042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.