×

A numerical approach with error estimation to solve general integro-differential-difference equations using Dickson polynomials. (English) Zbl 1410.65240

Summary: In this paper, a matrix method based on the Dickson polynomials and collocation points is introduced for the numerical solution of linear integro-differential-difference equations with variable coefficients under the mixed conditions. In addition, in order to improve the numerical solution, an error analysis technique relating to residual functions is performed. Some linear and nonlinear numerical examples are given to illustrate the accuracy and applicability of the method. Eventually, the obtained results are discussed according to the parameter-\(\alpha\) of Dickson polynomials and the residual error estimation.

MSC:

65L03 Numerical methods for functional-differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Maleknejad, K.; Mahmoidi, Y., Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions, Appl. Math. Comput., 149, 799-806 (2004) · Zbl 1038.65147
[2] Ren, Y.; Zhang, B.; Qiao, H., A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math., 110, 15-24 (1999) · Zbl 0936.65146
[3] Wang, W., An algorithm for solving the higher-order nonlinear Volterra-Fredholm integro-differential equation with mechanization, Appl. Math. Comput., 172, 1-23 (2006) · Zbl 1088.65118
[4] Yalçınbaş, S.; Sezer, M., The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291-308 (2000) · Zbl 1023.65147
[5] Dehghan, M.; Shakeri, F., Solution of an integro-differential equation arising in oscillating magnetic field using He’s homotopy perturbation method, Prog. Electromagn. Res. PIER, 78, 361-376 (2008)
[6] Menga, X.; Chenb, L.; Wu, B., A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Anal. Real World Appl., 11, 88-98 (2010) · Zbl 1184.92044
[7] Kot, M., Elements of Mathematical Ecology (2001), Cambridge University Press
[8] Biazar, J.; Shahbala, M.; Ebrahimi, H., VIM for solving the pollution problem of a system of lakes, J. Control Sci. Eng., 2010, 1-6 (2010)
[9] Wonga, J.; Abilez, O. J.; Kuhl, E., Computational optogenetics: a novel continuum framework for the photoelectrochemistry of living systems, J. Mech. Phys. Solids, 60, 1158-1178 (2012)
[10] Yalçınbaş, S.; Sezer, M., A Taylor collocation method for the approximate solution of general linear Fredholm-Volterra integro-difference equations with mixed argument, Appl. Math. Comput., 175, 675-690 (2006) · Zbl 1088.65123
[11] Gülsu, M.; Öztürk, Y.; Sezer, M., A new Chebyshev polynomial approximation for solving delay differential equations, J. Differ. Equ. Appl., 18, 6, 1043-1065 (2012) · Zbl 1245.65081
[12] Erdem, K.; Yalçınbaş, S.; Sezer, M., A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations,, J. Differ. Equ. Appl., 19, 10, 1619-1631 (2013) · Zbl 1277.65114
[13] Şahin, N.; Yüzbaşı, Ş.; Sezer, M., A Bessel polynomial approach for solving general linear Fredholm integro-differential-difference equations, Int. J. Comput. Math., 88, 14, 3093-3111 (2011) · Zbl 1242.65288
[14] Oğuz, C.; Sezer, M., Chelyshkov collocation method for a class of mixed functional integro-differential equations, Appl. Math. Comput., 259, 943-954 (2015) · Zbl 1448.65082
[15] Yüzbaşı, Ş., Laguerre approach for solving pantograph-type Volterra integro-differential equations, Appl. Math. Comput., 232, 1183-1199 (2014) · Zbl 1410.65510
[16] Dickson, L. E., The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group I-II, Ann. Math., 11, 1/6, 65-120 (1896) · JFM 28.0135.03
[17] Brewer, B. W., On certain character sums, Trans. Am. Math. Soc., 99, 2, 241-245 (1961) · Zbl 0103.03205
[18] Çelik, İ., Collacation method and residual correction using Chebyshev series, Appl. Math. Comput., 174, 910-920 (2006) · Zbl 1090.65096
[19] Gürbüz, B.; Sezer, M.; Güler, C., Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments, J. Appl. Math., 2014, 12 (2014), Article ID 682398 · Zbl 1442.65454
[20] Bülbül, B.; Sezer, M., A numerical approach for solving generalized Abel-type nonlinear differential equations, Appl. Math. Comput., 262, 169-177 (2015) · Zbl 1410.65244
[21] Gülsu, M.; Sezer, M., A Taylor collocation method for solving high-order linear pantograph equations with linear functional argument, Numer. Methods Partial Differ. Equ., 27, 1628-1638 (2011) · Zbl 1228.65106
[22] Evans, D. J.; Raslan, K. R., The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math., 82, 49-54 (2005) · Zbl 1069.65074
[23] El-Safty, A.; Salim, M. S.; El-Khatib, M. A., Convergence of the spline function for delay dynamic system, Int. J. Comput. Math., 80, 509-518 (2003) · Zbl 1022.65075
[24] Biazar, J.; Ghanbari, B., The homotopy perturbation method for solving neutral functional-differential equations with proportional delays, J. King Saud Univ. Sci., 24, 1, 33-37 (2012)
[25] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation (2003), The Clarendon Press Oxford University Press: The Clarendon Press Oxford University Press NewYork · Zbl 1038.65058
[26] Chen, X.; Wang, L., The variational iteration method for solving a neutral functional-differential equation with proportional delays, Comput. Math. Appl., 59, 8, 2696-2702 (2010) · Zbl 1193.65145
[27] Akgönüllü, N.; Şahin, N.; Sezer, M., A Hermite collocation method for the approximate solutions of high-order linear Fredholm integro-differential equations, Numer. Methods Partial Differ. Equ., 27, 6, 1707-1721 (2011) · Zbl 1228.65240
[28] Dehghan, M.; Shakeri, F., The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Phys. Scr., 78, 11 (2008), Article ID 065004 · Zbl 1159.78319
[29] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA · Zbl 0802.65122
[30] Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501-544 (1988) · Zbl 0671.34053
[32] Bhargava, M.; Zieve, M. E., Factorizing Dickson polynomials over finite fields, Finite Fields Appl., 5, 2, 103-111 (1999) · Zbl 0929.11060
[33] Wei, P.; Liao, X.; Wong, K-W., Key exchange based on Dickson polynomials over finite field with 2^\(m\), J. Comput., 6, 12, 2546-2551 (2011)
[34] Stoll, T., Complete decomposition of Dickson-type recursive polynomials and a related Diophantine equation, J. Number Theory, 128, 5, 1157-1181 (2008) · Zbl 1161.11005
[35] Diene, A.; Salim, M. A., Fixed points of the Dickson polynomials of the second kind, J. Appl. Math., 2013, 7 (2013), Article ID 472350 · Zbl 1266.33010
[36] Fried, M., On a conjecture of Schur, Mich. Math. J., 17, 41-55 (1970) · Zbl 0169.37702
[37] Lidl, R.; Mullen, G. L.; Turnwald, G., Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics 65 (1993), Longman Scientific and Technical: Longman Scientific and Technical Harlow, Essex · Zbl 0823.11070
[38] Weisstein, E. W., CRC Concise Encyclopedia of Mathematics (2002), Chapman and Hall/CRC · Zbl 1079.00009
[39] Mullen, G. L., Permutation polynomials over finite fields, Finite Fields, Coding Theory with Advances in Communication and Computing, Lecture Notes in Pure and Applied Mathematics, vol. 141, 131-151 (1993) · Zbl 0808.11069
[40] Lidl, R.; Mullen, G. L., Cycle structure of Dickson permutation polynomials, Math. J. Okayama Univ, 33, 1, 1-11 (1991) · Zbl 0759.11044
[41] Qu, L.; Ding, C., Dickson Polynomials of the second kind that permute \(Z_m\), SIAM J. Discret. Math., 28, 2, 722-735 (2014) · Zbl 1312.11018
[42] He, J. H., Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009
[43] He, J. H.; Wu, X. H., Variational iteration method: New development and applications, Comput. Math. Appl., 54, 881-894 (2007) · Zbl 1141.65372
[44] He, J. H., Variational iteration method-some recent results and new interpretation, J. Comput. Appl. Math., 207, 3-17 (2007) · Zbl 1119.65049
[45] He, J. H., Variational iteration method-a kind of non-linear analytical technique: Some examples, Int. J. Nonlinear Mech., 34, 4, 699-708 (1999) · Zbl 1342.34005
[46] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[47] He, J. H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Nonlinear Mech., 35, 37-43 (2000) · Zbl 1068.74618
[48] He, J. H., Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[49] He, J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350, 87-88 (2006) · Zbl 1195.65207
[50] Hwang, C.; Shih, Y. P., Laguerre series solution of a functional differential equation, Int. J. Syst. Sci., 13, 783-788 (1982) · Zbl 0483.93056
[51] Rao, G. P.; Palanisamy, K. R., Walsh stretch matrices and functional differential equations, IEEE Trans. Autom. Control, 27, 272-276 (1982) · Zbl 0488.34060
[52] Hwang, C., Solution of a functional differential equation via delayed unit step functions, Int. J. Syst. Sci., 14, 1065-1073 (1983) · Zbl 0509.93026
[53] Abbasbandy, S., Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method, Appl. Math. Comput., 172, 485-490 (2006) · Zbl 1088.65063
[54] Yusufoğlu, E., Numerical solution of Duffing equation by the Laplace decomposition algorithm, Appl. Math. Comput., 177, 572-580 (2006) · Zbl 1096.65067
[55] Wu, Y.; Zhang, N.; Yuan, J., A robust adaptive method for singularly perturbed convection-diffusion problem with two small parameters, Comput. Math. Appl., 66, 996-1009 (2013) · Zbl 07863335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.