×

Energy-preserving hybrid asymptotic augmented finite volume methods for nonlinear degenerate wave equations. (English) Zbl 07846831

Summary: In this paper we develop and analyze two energy-preserving hybrid asymptotic augmented finite volume methods on uniform grids for nonlinear weakly degenerate and strongly degenerate wave equations. In order to deal with the degeneracy, we introduce an intermediate point to divide the whole domain into singular subdomain and regular subdomain. Then Puiseux series asymptotic technique is used in singular subdomain and augmented finite volume scheme is used in regular subdomain. The keys of the method are the recovery of Puiseux series in singular subdomain and the appropriate combination of singular and regular subdomain by means of augmented variables associated with the singularity. Although the effect of singularity on the calculation domain is conquered by the Puiseux series reconstruction technique, it also brings difficulties to the theoretical analysis. Based on the idea of staggered grid, we overcome the difficulties arising from the augmented variables related to singularity for the construction of conservation scheme. The discrete energy conservation and convergence of the two energy-preserving methods are demonstrated successfully. The advantages of the proposed methods are the energy conservation and the global convergence order determined by the regular subdomain scheme. Numerical examples on weakly degenerate and strongly degenerate under different nonlinear functions are provided to demonstrate the validity and conservation of the proposed method. Specially, the conservation of discrete energy is also ensured by using the proposed methods for both the generalized Sine-Gordeon equation and the coefficient blow-up problem.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
35L80 Degenerate hyperbolic equations
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] W. Bao, Y. Cai and X. Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 52 (2014), 2488-2511. · Zbl 1310.65131
[2] I. Boutaayamou and G. Fragnelli, A degenerate population system: Carleman estimates and controllability, Nonlinear Anal., 195 (2020), 111742. · Zbl 1435.35398
[3] I. Boutaayamou, G. Fragnelli and D. Mugnai, Boundary controllability for a degenerate wave equation in nondivergence form with drift, SIAM J. Control Optim., 61 (2023), 1934-1954. · Zbl 1518.35475
[4] L. A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc., 252 (1979), 99-113. · Zbl 0425.35060
[5] J. Cai and J. Shen, Two classes of linearly implicit local energy-preserving approach for gen-eral multi-symplectic Hamiltonian PDEs, J. Comput. Phys., 401 (2020), 108975. · Zbl 1453.65437
[6] Z. Cai and S. Kim, A finite element method using singular functions for the Poisson equa-tion: corner singularities, SIAM J. Numer. Anal., 39 (2001), 286-299. · Zbl 0992.65122
[7] N. Calvo, J. I. Díaz, J. Durany, E. Schiavi and C. Vázquez, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2002), 683-707. · Zbl 1032.35115
[8] W. Cao, D. Li and Z. Zhang, Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear wave equations, Sci. China Math., 65 (2022), 1731-1748. · Zbl 1493.65147
[9] J. A. Carrillo and K. Lin, Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system, Adv. Nonlinear Anal., 11 (2022), 1-39. · Zbl 1473.35064
[10] T. Chernogorova and R. Valkov, Analysis of a finite volume element method for a degenerate parabolic equation in the zero-coupon bond pricing, Comput. Appl. Math., 34 (2015), 619-646. · Zbl 1326.65113
[11] C.-S. Chou, C.-W. Shu and Y. Xing, Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media, J. Comput. Phys., 272 (2014), 88-107. · Zbl 1349.65446
[12] G. Citti and M. Manfredini, A degenerate parabolic equation arising in image processing, Commun. Appl. Anal., 8 (2004), 125-147. · Zbl 1099.35050
[13] M. Dehghan and A. Shokri, A numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions, Numer. Methods Partial Dif-ferential Equations, 24 (2008), 687-698. · Zbl 1135.65380
[14] D. Deng and D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188-209. · Zbl 1427.65157
[15] S. Y. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii and B. Tirozzi, Simple exact and asymptotic solutions of the 1D run-up problem over a slowly varying (quasiplanar) bottom, Theory and Applications in Mathematical Physics, (2016), 29-47. · Zbl 1329.35246
[16] Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696. · Zbl 1422.76168
[17] J. Duan and H. Tang, High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics, J. Comput. Phys., 431 (2021), 110136. · Zbl 07511453
[18] A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51 (2009), 3-33. · Zbl 1158.78004
[19] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equa-tions, SIAM J. Control Optim., 52 (2014), 2037-2054. · Zbl 1327.35211
[20] D. He, I. Witt and H. Yin, On semilinear tricomi equations with critical exponents or in two space dimensions, J. Differential Equations, 263 (2017), 8102-8137. · Zbl 1379.35199
[21] B. Hou and D. Liang, Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients, J. Comput. Phys., 421 (2020), 109738. · Zbl 07508363
[22] D. Hou and C. Xu, A fractional spectral method with applications to some singular prob-lems, Adv. Comput. Math., 43 (2017), 911-944. · Zbl 1382.65467
[23] W. Hu, Z. Deng, S. Han and W. Zhang, Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs, J. Comput. Phys., 235 (2013), 394-406. · Zbl 1291.65361
[24] W. Huang, H. Ma and W. Sun, Convergence analysis of spectral collocation methods for a singular differential equation, SIAM J. Numer. Anal., 41 (2003), 2333-2349. · Zbl 1058.65076
[25] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48 (1995), 235-276. · Zbl 0826.65078
[26] Q. Jiu, Y. Wang and Z. Xin, Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities, J. Differential Equations, 259 (2015), 2981-3003. · Zbl 1319.35194
[27] M. Kumar, A second order finite difference method and its convergence for a class of singu-lar two-point boundary value problems, Appl. Math. Comput., 146 (2003), 873-878. · Zbl 1032.65086
[28] D. Li and W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 1-17. · Zbl 1442.65220
[29] S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32 (1995), 1839-1875. · Zbl 0847.65062
[30] Y. Li, T. Zhao, Z. Zhang and T. Wang, The high order augmented finite volume methods based on series expansion for nonlinear degenerate parabolic equations, J. Sci. Comput., 88 (2021), 1-39. · Zbl 1477.65176
[31] Y. Liu, C.-W. Shu and M. Zhang, High order finite difference WENO schemes for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 33 (2011), 939-965. · Zbl 1227.65074
[32] K. Murota, Computing Puiseux-series solutions to determinantal equations via combinato-rial relaxation, SIAM J. Comput., 19 (1990), 1132-1161. · Zbl 0711.68066
[33] R. H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using nu-merical integration, SIAM J. Numer. Anal., 25 (1988), 784-814. · Zbl 0655.65131
[34] J. K. Perring and T. H. R. Skyrme, A model unified field equation, Nuclear Phys. B, 31 (1962), 550-555. · Zbl 0106.20105
[35] I. S. Pop and W.-A. Yong, A numerical approach to degenerate parabolic equations, Numer. Math., 92 (2002), 357-381. · Zbl 1011.65063
[36] J. Shen and Y. Wang, M üntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems, SIAM J. Sci. Comput., 38 (2016), A2357-A2381. · Zbl 1416.65482
[37] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection domi-nated problems, SIAM Rev., 51 (2009), 82-126. · Zbl 1160.65330
[38] R. Singh and J. Kumar, An efficient numerical technique for the solution of nonlinear singu-lar boundary value problems, Comput. Phys. Commun., 185 (2014), 1282-1289. · Zbl 1344.65067
[39] Z. Sun, A note on finite difference method for generalized Zakharov equations, J. Southeast Univ. (English Ed.), 16 (2000), 84-86. · Zbl 1007.65052
[40] W. W. Szczechla, S. A. Connell, J. A. Filar and O. J. Vrieze, On the Puiseux series expansion of the limit discount equation of stochastic games, SIAM J. Control Optim., 35 (1997), 860-875. · Zbl 0879.90199
[41] H. Tang and T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic con-servation laws, SIAM J. Numer. Anal., 41 (2003), 487-515. · Zbl 1052.65079
[42] C. Wang, A free boundary problem of a degenerate elliptic equation and subsonic-sonic flows with general sonic curves, SIAM J. Math. Anal., 51 (2019), 4977-5010. · Zbl 1427.35374
[43] C. Wang and Z. Xin, On sonic curves of smooth subsonic-sonic and transonic flows, SIAM J. Math. Anal., 48 (2016), 2414-2453. · Zbl 1410.76137
[44] T. Wang, Z. Liu and Z. Zhang, The modified composite Gauss type rules for singular inte-grals using Puiseux expansions, Math. Comp., 86 (2017), 345-373. · Zbl 1351.65018
[45] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 1974. · Zbl 0373.76001
[46] D. Wu, J. Yue, G. Yuan and J. Lv, Finite volume element approximation for nonlinear diffu-sion problems with degenerate diffusion coefficients, Appl. Numer. Math., 140 (2019), 23-47. · Zbl 1435.65139
[47] J. Xie, D. Liang and Z. Zhang, Energy-preserving local mesh-refined splitting FDTD schemes for two dimensional Maxwell’s equations, J. Comput. Phys., 425 (2021), 109896. · Zbl 07508494
[48] J. Xie and Z. Zhang, An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equations, J. Sci. Comput., 79 (2019), 1753-1776. · Zbl 1422.65192
[49] G. Xu and H. Yin, Three-dimensional global supersonic euler flows in the infinitely long divergent nozzles, SIAM J. Math. Anal., 53 (2021), 133-180. · Zbl 1457.35032
[50] M. Zhang and H. Gao, Null controllability of some degenerate wave equations, J. Syst. Sci. Complex., 30 (2017), 1027-1041. · Zbl 1380.93064
[51] M. Zhang and H. Gao, Interior controllability of semi-linear degenerate wave equations, J. Math. Anal. Appl., 457 (2018), 10-22. · Zbl 1370.93059
[52] T. Zhao, Z. Zhang and T. Wang, A hybrid asymptotic and augmented compact finite volume method for nonlinear singular two point boundary value problems, Appl. Math. Comput., 392 (2021), 125745. · Zbl 1488.65206
[53] Y. Zhou, Q. Wang and Z. Zhang, Physical properties preserving numerical simulation of stochastic fractional nonlinear wave equation, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105832. · Zbl 1481.60125
[54] Y. L. Zhou, Applications of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, 1991. · Zbl 0732.65080
[55] J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 318 (2016), 110-121. · Zbl 1349.65365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.