×

High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. (English) Zbl 07511453

Summary: This paper develops the high-order accurate entropy stable (ES) finite difference schemes for the shallow water magnetohydrodynamic (SWMHD) equations. They are built on the numerical approximation of the modified SWMHD equations with the Janhunen source term. First, the second-order accurate well-balanced semi-discrete entropy conservative (EC) schemes are constructed, satisfying the entropy identity for the given convex entropy function and preserving the steady states of the lake at rest (with zero magnetic field). The key is to match both discretizations for the fluxes and the non-flat river bed bottom and Janhunen source terms, and to find the affordable EC fluxes of the second-order EC schemes. Next, by using the second-order EC schemes as building block, high-order accurate well-balanced semi-discrete EC schemes are proposed. Then, the high-order accurate well-balanced semi-discrete ES schemes are derived by adding a suitable dissipation term to the EC scheme with the WENO reconstruction of the scaled entropy variables in order to suppress the numerical oscillations of the EC schemes. After that, the semi-discrete schemes are integrated in time by using the high-order strong stability preserving explicit Runge-Kutta schemes to obtain the fully-discrete high-order well-balanced schemes. The ES property of the Lax-Friedrichs flux is also proved and then the positivity-preserving ES schemes are studied by using the positivity-preserving flux limiters. Finally, extensive numerical tests are conducted to validate the accuracy, the well-balanced, ES and positivity-preserving properties, and the ability to capture discontinuities of our schemes.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

References:

[1] Ahmed, S.; Zia, S., The higher-order CESE method for two-dimensional shallow water magnetohydrodynamics equations, Eur. J. Pure Appl. Math., 12, 1464-1482 (2019)
[2] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056 (2009) · Zbl 1280.76030
[3] Barth, T. J., Numerical methods for gasdynamic systems on unstructured meshes, (Kroner, D.; Ohlberger, M.; Rohde, C., An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (1999), Springer), 195-285 · Zbl 0969.76040
[4] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 1049-1071 (1994) · Zbl 0816.76052
[5] Biswas, B.; Dubey, R. K., Low dissipative entropy stable schemes using third order WENO and TVD reconstructions, Adv. Comput. Math., 44, 1153-1181 (2018) · Zbl 1396.65139
[6] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211 (2008) · Zbl 1136.65076
[7] Bouchut, F.; Bourdarias, C.; Perthame, B., A MUSCL method satisfying all the numerical entropy inequalities, Math. Comput., 65, 1439-1461 (1996) · Zbl 0853.65091
[8] Brackbill, J. U.; Barnes, D. C., The effect of nonzero \(\operatorname{\nabla} \cdot \text{B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426-430 (1980) · Zbl 0429.76079
[9] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2D Cartesian meshes, SIAM J. Numer. Anal., 54, 1313-1340 (2016) · Zbl 1381.76213
[10] Chen, T. H.; Shu, C. W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[11] Crandall, M. G.; Majda, A., Monotone difference approximations for scalar conservation laws, Math. Comput., 34, 1-21 (1980) · Zbl 0423.65052
[12] De Sterck, H., Hyperbolic theory of the “shallow water” magnetohydrodynamics equations, Phys. Plasmas, 8, 3293-3304 (2001)
[13] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[14] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037
[15] Duan, J. M.; Tang, H. Z., High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics, Adv. Appl. Math. Mech., 12, 1-29 (2020) · Zbl 1488.65238
[16] Duan, J. M.; Tang, H. Z., High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics, J. Comput. Phys., 421, Article 109731 pp. (2020) · Zbl 1537.76180
[17] Duan, J. M.; Tang, H. Z., Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, J. Comput. Phys., Article 109949 pp. (2020)
[18] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 332, 659-677 (1988)
[19] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[20] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys., 230, 5587-5609 (2011) · Zbl 1452.35149
[21] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150
[22] Fjordholm, U. S.; Mishra, S.; Tadmor, E., ENO reconstruction and ENO interpolation are stable, Found. Comput. Math., 13, 139-159 (2013) · Zbl 1273.65120
[23] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308 (2016) · Zbl 1410.65393
[24] Gilman, P. A., Magnetohydrodynamic “shallow water” equations for the solar tachocline, Astrophys. J., 544, L79-L82 (2000)
[25] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[26] Hiltebrand, A.; Mishra, S., Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., 126, 103-151 (2014) · Zbl 1303.65083
[27] Hu, X. Y.; Adams, N. A.; Shu, C. W., Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242, 169-180 (2013) · Zbl 1311.76088
[28] Hughes, T. J.; Franca, L.; Mallet, M., A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Eng., 54, 223-234 (1986) · Zbl 0572.76068
[29] Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys., 160, 649-661 (2000) · Zbl 0967.76061
[30] Kemm, F., Roe-type schemes for shallow water magnetohydrodynamics with hyperbolic divergence cleaning, Appl. Math. Comput., 272, 385-402 (2016) · Zbl 1410.76238
[31] Kröger, T.; Lukáčová-Medvid’ová, M., An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions, J. Comput. Phys., 206, 122-149 (2005) · Zbl 1087.76065
[32] Kuang, Y. Y.; Wu, K. L.; Tang, H. Z., Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid, Numer. Math.: Theory Methods Appl., 10, 373-419 (2017) · Zbl 1399.65255
[33] Lefloch, P. G.; Mercier, J. M.; Rohde, C., Fully discrete entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal., 40, 1968-1992 (2002) · Zbl 1033.65073
[34] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146, 346-365 (1998) · Zbl 0931.76059
[35] Li, F. Y.; Shu, C. W., Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput., 22, 413-442 (2005) · Zbl 1123.76341
[36] Li, F. Y.; Xu, L. W., Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231, 2655-2675 (2011) · Zbl 1427.76135
[37] Londrillo, P.; Del Zanna, L., On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method, J. Comput. Phys., 195, 17-48 (2004) · Zbl 1087.76074
[38] Noelle, S.; Xing, Y. L.; Shu, C. W., High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226, 29-58 (2007) · Zbl 1120.76046
[39] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129-143 (1979)
[40] Osher, S., Riemann solvers, the entropy condition, and difference, SIAM J. Numer. Anal., 21, 217-235 (1984) · Zbl 0592.65069
[41] Osher, S.; Tadmor, E., On the convergence of difference approximations to scalar conservation laws, Math. Comput., 50, 19-51 (1988) · Zbl 0637.65091
[42] Powell, K. G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), (ICASE 94-24 (1994))
[43] Qamar, S.; Warnecke, G., Application of space-time CE/SE method to shallow water magnetohydrodynamic equations, J. Comput. Appl. Math., 196, 132-149 (2006) · Zbl 1168.76385
[44] Rossmanith, J. A., A constrained transport method for the shallow water mhd equations, (Hou, T.; Tadmor, E., Hyperbolic Problems: Theory, Numerics, Applications (2003), Springer), 851-860 · Zbl 1134.76399
[45] Rossmanith, J. A., An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput., 28, 1766-1797 (2006) · Zbl 1344.76092
[46] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[47] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[48] Tang, H. Z., Solution of the shallow-water equations using an adaptive moving mesh method, Int. J. Numer. Methods Fluids, 44, 789-810 (2004) · Zbl 1085.76536
[49] Tang, H. Z.; Tang, T.; Xu, K., A gas-kinetic scheme for shallow-water equations with source terms, Z. Angew. Math. Phys., 55, 365-382 (2004) · Zbl 1142.76457
[50] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[51] Winters, A. R.; Gassner, G. J., An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics, J. Sci. Comput., 67, 514-539 (2016) · Zbl 1381.76227
[52] Wu, K. L.; Shu, C. W., Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations, SIAM J. Sci. Comput., 42, A2230-A2261 (2020) · Zbl 1450.65089
[53] Wu, K. L.; Tang, H. Z., A Newton multigrid method for steady-state shallow water equations with topography and dry areas, Appl. Math. Mech., 37, 1441-1466 (2016) · Zbl 1367.76037
[54] Xing, Y. L., Numerical methods for the nonlinear shallow water equations, (Handbook of Numerical Analysis, vol. 18 (2017), Elsevier), 361-384 · Zbl 1366.76066
[55] Xing, Y. L.; Shu, C. W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys., 208, 206-227 (2005) · Zbl 1114.76340
[56] Xiong, T.; Xu, Z. F.; Qiu, J. M., Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations, J. Sci. Comput., 67, 1066-1088 (2016) · Zbl 1383.76365
[57] Xu, K., A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, J. Comput. Phys., 178, 533-562 (2002) · Zbl 1017.76071
[58] Xu, Z. F., Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem, Math. Comput., 83, 2213-2238 (2014) · Zbl 1300.65063
[59] Zia, S.; Ahmed, M.; Qamar, S., Numerical solution of shallow water magnetohydrodynamic equations with non-flat bottom topography, Int. J. Comput. Fluid Dyn., 28, 56-75 (2014) · Zbl 07512585
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.