×

Application of weak Galerkin finite element method for nonlinear chemotaxis and haptotaxis models. (English) Zbl 1510.65243

Summary: In this paper, we introduce a weak Galerkin finite element method for 2D Keller-Segel chemotaxis models and closely related haptotaxis models to simulate tumor invasion into surrounding healthy tissue. The chemotaxis and haptotaxis models consist of a system of time-dependent nonlinear reaction-diffusion-taxis partial differential equations. It is well known that solutions of chemotaxis systems may blow-up in finite time in the cell density. This blow-up is a mathematical description of a cell concentration phenomenon, which mathematically results in rapidly growing solutions in small neighborhoods of concentration points or curves. Capturing such singular solutions numerically is a challenging problem. We applied the weak Galerkin finite element method (WGFEM) to approximate the spatial variables. Weak Galerkin finite element method can be considered as an extension of the standard finite element method where classical derivatives are replaced in the variational equation by the weakly defined derivatives on discontinuous weak functions. The weak derivatives of weak functions are approximated by polynomials with various degrees of freedom. The accuracy and the computational complexity of the WGFEM is impacted by the selection of such polynomials. We show that the proposed method produced numerical results that are nonnegative, oscillation-free and suitable for solving models that have a blow-up of the cell density. Error bounds for cell density and chemoattractant equation are obtained. The proposed method is applied to several Keller-Segel chemotaxis models and extended to the haptotaxis model for simulating the behavior of cancer cell invasion of surrounding healthy tissue. Numerical results demonstrate the accuracy and efficiency of the proposed scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35B44 Blow-up in context of PDEs
35K55 Nonlinear parabolic equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Patlak, C., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044
[2] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[3] Tyson, R.; Lubkin, S. R.; Murray, J. D., Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38, 299-375 (1999) · Zbl 0921.92005
[4] Tyson, R.; Stern, L. G.; Veque, R. J.L., Fractional step methods applied to a chemotaxis model, J. Math. Biol., 41, 455-475 (2000) · Zbl 1002.92003
[5] Epshteyn, Y., Discontinuous galerkin methods for the chemotaxis and haptotaxis models, J. Comput. Appl. Math., 224, 168-181 (2009) · Zbl 1157.65449
[6] Chertock, A.; Kurganov, A., A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111, 169-205 (2008) · Zbl 1307.92045
[7] Epshteyn, Y.; Kurganov, A., New interior penalty discontinuous galerkin methods for the keller-segel chemotaxis model, SIAM J. Numer. Anal., 47, 386-408 (2009) · Zbl 1183.92010
[8] Hittmeir, S.; Jngel, A., Cross diffusion preventing blow-up in the two-dimensional keller-segel model, SIAM J. Math. Anal., 43, 997-1022 (2011) · Zbl 1259.35114
[9] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate keller-segel systems of parabolic-parabolic type with small data, J. Differ. Equ., 252, 2469-2491 (2012) · Zbl 1241.35118
[10] Epshteyn, Y., Upwind-difference potentials method for patlak-keller-segel chemotaxis model, J. Sci. Comput., 53, 689-713 (2012) · Zbl 1317.92019
[11] Li, J.; Zheng, S., A lower bound for blow-up time in a fully parabolic keller-segel system, Appl. Math. Lett., 26, 510-514 (2013) · Zbl 1262.35056
[12] Kurganov, A.; Medvidova, M. L., Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst., 19, 131-152 (2014) · Zbl 1282.92011
[13] Yang, X.; Shi, B.; Chai, Z., Coupled lattice boltzmann method for generalized keller-segel chemotaxis model, Comput. Math Appl., 68, 1653-1670 (2014) · Zbl 1369.92017
[14] Li, X. H.; Shu, C. W.; Yang, Y., Local discontinuous galerkin method for the keller-segel chemotaxis model, J. Sci. Comput., 73, 943-967 (2017) · Zbl 1384.92015
[15] Chertok, A.; Epshteyn, Y.; .Hu, H.; Karganov, A., High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44, 327-350 (2018) · Zbl 1380.92011
[16] Wang, J.; Ye, X., A weak galerkin finite element method for second order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[17] Gao, F.; Mu, L., On l2 error estimate for weak galerkin finite element methods for parabolic problems, J. Comp. Math., 32, 195-204 (2014) · Zbl 1313.65246
[18] Mu, L.; Wang, J.; Ye, X., A new weak galerkin finite element method for helmholtz equation, IMA J. Numer. Anal., 35, 1228-1255 (2015) · Zbl 1323.65116
[19] Zhang, R.; Li, Q. L., A weak galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64, 559-585 (2015) · Zbl 1331.65163
[20] Zhai, Q.; Zhang, R.; Mu, L., A new weak galerkin finite element scheme for the brinkman model, Commun.Comput. Phys., 19, 1409-1434 (2016) · Zbl 1373.76108
[21] Mu, L.; Wang, J.; Wei, G. W.; Ye, X.; Zhao, S., Weak galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250, 106-125 (2013) · Zbl 1349.65472
[22] Wang, R.; Zhang, R., A weak galerkin finite element method for the linear elasticity problem in mixed form, J. Comp. Math., 36, 469-491 (2018) · Zbl 1424.74046
[23] Liu, X.; Li, J.; Chen, Z., A weak galerkin finite element method for the oseen equations, Adv. Comput. Math., 42, 1473-1490 (2016) · Zbl 1426.76286
[24] Liu, J.; Tavener, S.; Wang, Z., The lowest-order weak galerkin finite element method for the darcy equation on quadrilateral and hybrid meshes, J. Comput. Phys., 359, 312-330 (2018) · Zbl 1383.76449
[25] Li, R.; Gao, Y.; Li, J.; Chen, Z., A weak galerkin finite element method for a coupled stokes-darcy problem on general meshes, J. Comput. Appl. Math., 334, 111-127 (2018) · Zbl 1457.76101
[26] Shields, S.; Li, J. C.; Machorro, E. A., Weak galerkin methods for time dependent maxwell’s equations, Comput. Math. Appl., 74, 2106-2124 (2017) · Zbl 1397.65192
[27] Gao, F.; Cui, J.; Zhao, G., Weak galerkin finite element method for sobolev equation, J. Comput. Appl. Math., 317, 188-202 (2017) · Zbl 1357.65175
[28] Mu, L.; Wang, J.; Ye, X., Weak galerkin finite element methdos on polytopal meshes, Int. J. Numer. Anal. Model., 12, 31-53 (2015) · Zbl 1332.65172
[29] Mu, L.; Wang, J.; Ye, X., A weak galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285, 45-58 (2015) · Zbl 1315.65099
[30] Zhang, T.; Lin, T., A stable weak galerkin finite element method for stokes problem, J. Comput. Appl. Math., 333, 235-246 (2018) · Zbl 1457.65224
[31] Wang, J.; Ye, X., The basics of weak galerkin finite element methods, arXiv: 1901.10035 [math. NA] (2019)
[32] Brunner, H.; Huang, Q.; Xie, H., Discontinuous galerkin methods for delay differential equations of pantograph type, SIAM J. Numer. Anal., 48, 1944-1967 (2010) · Zbl 1219.65076
[33] Gao, F.; Gao, G., Weak galerkin finite element method for time dependent reaction-diffusion equation, Comput. Anal., 21, 1086-1102 (2016) · Zbl 1333.65109
[34] Zhang, H.; Zou, Y.; Xu, Y.; Zhai, Q.; Yue, H., Weak galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model, 13, 525-544 (2016) · Zbl 1362.65110
[35] Atkinson, K.; Weimin, H., Theoretical numerical analysis: A Functional analysis framework (2009), Springer · Zbl 1181.47078
[36] Gurusamy, A.; Balachandran, K., Finite element method for solving keller-segel chemotaxis system with cross-diffusion, Int. J. Dyn. Control., 6, 539-549 (2018)
[37] Herrero, M. A.; Velázquez, J. J., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super., 24, 633-683 (1997) · Zbl 0904.35037
[38] Tyson, R.; Lubkin, S. R.; Murray, J. D., Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38, 359-375 (1999) · Zbl 0921.92005
[39] Kurganov, A.; Lukacova-Medvidova, M., Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B., 19, 131-152 (2014) · Zbl 1282.92011
[40] Carter, S. B., Principles of cell motility: the direction of cell movement and cancer invasion, Nature, 208, 1183-1187 (1965)
[41] Carter, S. B., Haptotaxis and the mechanism of cell motility, Nature, 213, 256-260 (1967)
[42] Dehghan, M.; Narimani, N., An element-free galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue, Appl. Math. Model., 59, 500-513 (2018) · Zbl 1480.92103
[43] Enderling, H.; Anderson, A. R.A.; Chaplain, M. A.J.; Munro, A. J.; Vaidya, J. S., Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241, 158-171 (2006) · Zbl 1447.92195
[44] Anderson, A. R.A.; Chaplain, M. A.J.; Newman, E. L.; Steele, R. J.C.; Thompson, A. M., Mathematical modelling of tumour invasion and metastasis, J. Theor. Med., 2, 129-154 (2000) · Zbl 0947.92012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.