×

Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients. (English) Zbl 1514.65131

Summary: In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite element method for approximating a second-order linear viscoelastic wave equation with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete convergence analysis is considered. The second-order Newmark scheme is employed to develop the fully discrete scheme. We obtain supercloseness of order two, which is two orders higher than the optimal convergence rate in \(L^{\infty}(L^2)\) and \(L^{\infty}(H^1)\) norms. In other words, we attain \(\mathcal{O}(h^{k+3}+\tau^2)\) in \(L^{\infty}(L^2)\) norm and \(\mathcal{O}(h^{k+2}+\tau^2)\) in \(L^{\infty}(H^1)\) norm. Several numerical experiments in a two-dimensional setting are carried out to validate our theoretical convergence findings. These experiments confirm the robustness and accuracy of the proposed method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76A10 Viscoelastic fluids
86A15 Seismology (including tsunami modeling), earthquakes
76Q05 Hydro- and aero-acoustics
74D05 Linear constitutive equations for materials with memory
Full Text: DOI

References:

[1] Adams, R.; Fournier, J., Sobolev Spaces, Sec. Ed (2003), Amsterdam: Academic Press, Amsterdam · Zbl 1098.46001
[2] Adjerid, S.; Temimi, H., A discontinuous Galerkin method for the wave equation, Comput. Methods Appl. Mech Engrg., 200, 5-8, 837-849 (2011) · Zbl 1225.76187 · doi:10.1016/j.cma.2010.10.008
[3] Al-Taweel, A.; Hussain, S.; Wang, X., A stabilizer free weak Galerkin finite element method for parabolic equation, J. Comput. Appl Math., 392, 113373 (2021) · Zbl 1468.65183 · doi:10.1016/j.cam.2020.113373
[4] Al-Taweel, A.; Mu, L., A new upwind weak Galerkin finite element method for linear hyperbolic equations, J. Comput. Appl Math., 390, 113376 (2021) · Zbl 1476.65289 · doi:10.1016/j.cam.2020.113376
[5] Al-Taweel, A.; Wang, X., A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Appl. Numer Math., 150, 444-451 (2020) · Zbl 1440.65172 · doi:10.1016/j.apnum.2019.10.009
[6] Al-Taweel, A.; Wang, X.; Ye, X.; Zhang, S., A stabilizer free weak Galerkin finite element method with supercloseness of order two, Numer Methods Partial Diff. Equ., 37, 2, 1012-1029 (2021) · Zbl 07776000 · doi:10.1002/num.22564
[7] Ammari, H.; Chen, D.; Zou, J., Well-posedness of an electric interface model and its finite element approximation, Math. Models Methods Appl. Sci., 26, 3, 601-625 (2016) · Zbl 1331.78025 · doi:10.1142/S0218202516500111
[8] Baccouch, M., A local discontinuous Galerkin method for the second-order wave equation, Comput. Methods Appl. Mech. Engrg., 209, 129-143 (2012) · Zbl 1243.65119 · doi:10.1016/j.cma.2011.10.012
[9] Baker, GA, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal., 13, 4, 564-576 (1976) · Zbl 0345.65059 · doi:10.1137/0713048
[10] Baker, GA; Dougalis, VA, On the \(\text{L}^{\infty }\) L∞ convergence of Galerkin approximations for second-order hyperbolic equations, Math. Comp., 34, 150, 401-424 (1980) · Zbl 0454.65078
[11] Bonnasse-Gahot, M.; Calandra, H.; Diaz, J.; Lanteri, S., Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations, Geophys. J Internat., 213, 1, 637-659 (2018) · doi:10.1093/gji/ggx533
[12] Burman, E.; Duran, O.; Ern, A., Hybrid high-order methods for the acoustic wave equation in the time domain, Commun. Appl. Math Comput., 4, 2, 597-633 (2022) · Zbl 1499.65483 · doi:10.1007/s42967-021-00131-8
[13] Burman, E.; Duran, O.; Ern, A.; Steins, M., Convergence analysis of hybrid high-order methods for the wave equation, J. Sci Comput., 87, 3, 1-30 (2021) · Zbl 1480.65248 · doi:10.1007/s10915-021-01492-1
[14] Chen, G.; Russell, DL, A mathematical model for linear elastic systems with structural damping, Quart. Appl Math., 39, 4, 433-454 (1982) · Zbl 0515.73033 · doi:10.1090/qam/644099
[15] Chen, H.; Lu, P.; Xu, X., A hybridizable discontinuous Galerkin method for the helmholtz equation with high wave number, SIAM J. Numer Anal., 51, 4, 2166-2188 (2013) · Zbl 1278.65174 · doi:10.1137/120883451
[16] Cockburn, B.; Quenneville-Bélair, V., Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation, Math Comp., 83, 285, 65-85 (2014) · Zbl 1281.65118 · doi:10.1090/S0025-5718-2013-02743-3
[17] Cockburn, B.; Shu, C-W, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[18] Cowsat, LC; Dupont, TF; Wheeler, MF, A priori estimates for mixed finite element methods for the wave equation, Comput. Methods Appl. Mech Engrg., 82, 1-3, 205-222 (1990) · Zbl 0724.65087 · doi:10.1016/0045-7825(90)90165-I
[19] Deka, B., Kumar, N.: A systematic study on weak Galerkin finite element method for second order parabolic problems. arXiv:2103.13669 (2020)
[20] Deka, B.; Kumar, N., Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions, Appl. Numer Math., 162, 81-105 (2021) · Zbl 1466.65125 · doi:10.1016/j.apnum.2020.12.003
[21] Deka, B.; Roy, P., Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions, Numer Methods Partial Differential Equations, 36, 4, 734-755 (2020) · Zbl 07771412 · doi:10.1002/num.22446
[22] Dong, Z., Ern, A.: Hybrid high-order and weak Galerkin methods for the biharmonic problem. arXiv:2103.16404 (2021)
[23] Dong, Z.; Ern, A., Hybrid high-order and weak Galerkin methods for the biharmonic problem, SIAM J. Numer. Anal., 60, 5, 2626-2656 (2022) · Zbl 1501.65111 · doi:10.1137/21M1408555
[24] Dutta, J.; Deka, B., Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium, J. Sci Comput., 87, 2, 1-32 (2021) · Zbl 1472.65120 · doi:10.1007/s10915-021-01460-9
[25] Egger, H.; Radu, B., Super-convergence and post-processing for mixed finite element approximations of the wave equation, Numer. Math., 140, 2, 427-447 (2018) · Zbl 1404.65167 · doi:10.1007/s00211-018-0966-2
[26] Gao, L.; Liang, D.; Zhang, B., Error estimates for mixed finite element approximations of the viscoelasticity wave equation, Math Methods Appl. Sci., 27, 17, 1997-2016 (2004) · Zbl 1071.65129 · doi:10.1002/mma.534
[27] Gekeler, E., Linear multistep methods and Galerkin procedures for initial boundary value problems, SIAM J. Numer Anal., 13, 4, 536-548 (1976) · Zbl 0335.65042 · doi:10.1137/0713046
[28] Grote, MJ; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer Anal., 44, 6, 2408-2431 (2006) · Zbl 1129.65065 · doi:10.1137/05063194X
[29] Gurtin, ME; Pipkin, AC, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech Anal., 31, 2, 113-126 (1968) · Zbl 0164.12901 · doi:10.1007/BF00281373
[30] Huang, Y.; Li, J.; Li, D., Developing weak Galerkin finite element methods for the wave equation, Numer Methods Partial Differential Equations, 33, 3, 868-884 (2017) · Zbl 1377.65129 · doi:10.1002/num.22127
[31] Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, MS, A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media, Geophys. J. Internat., 212, 3, 1570-1587 (2017) · doi:10.1093/gji/ggx494
[32] Larsson, S.; Thomée, V.; Wahlbin, LB, Finite-element methods for a strongly damped wave equation, IMA J. Numer Anal., 11, 1, 115-142 (1991) · Zbl 0718.65070 · doi:10.1093/imanum/11.1.115
[33] Li, QH; Wang, J., Weak Galerkin finite element methods for parabolic equations, Numer Methods Partial Differential Equations, 29, 6, 2004-2024 (2013) · Zbl 1307.65133 · doi:10.1002/num.21786
[34] Lim, H.; Kim, S.; Douglas, JJr, Numerical methods for viscous and nonviscous wave equations, Appl. Numer. Math., 57, 2, 194-212 (2007) · Zbl 1116.65104 · doi:10.1016/j.apnum.2006.02.004
[35] Lin, G.; Liu, J.; Sadre-Marandi, F., A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods, J. Comput. Appl. Math., 273, 346-362 (2015) · Zbl 1295.65114 · doi:10.1016/j.cam.2014.06.024
[36] Lin, R.; Ye, X.; Zhang, S.; Zhu, P., A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer Anal., 56, 3, 1482-1497 (2018) · Zbl 1448.65239 · doi:10.1137/17M1152528
[37] Liu, J.; Tavener, S.; Wang, Z., Lowest-order weak Galerkin finite element method for darcy flow on convex polygonal meshes, SIAM J. Sci Comput., 40, 5, B1229-B1252 (2018) · Zbl 1404.65232 · doi:10.1137/17M1145677
[38] Nikolic, V.; Wohlmuth, B., A priori error estimates for the finite element approximation of westervelt’s quasi-linear acoustic wave equation, SIAM J. Numer Anal., 57, 4, 1897-1918 (2019) · Zbl 1476.65247 · doi:10.1137/19M1240873
[39] Pani, AK; Yuan, JY, Mixed finite element method for a strongly damped wave equation, Numer Methods Partial Differential Equations, 17, 2, 105-119 (2001) · Zbl 0982.65105 · doi:10.1002/1098-2426(200103)17:2<105::AID-NUM2>3.0.CO;2-F
[40] Qiu, T.; Tien, C., Short-pulse laser heating on metals, Int. J Heat Mass Transf., 35, 3, 719-726 (1992) · doi:10.1016/0017-9310(92)90131-B
[41] Rauch, J., On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal., 22, 2, 245-249 (1985) · Zbl 0575.65091 · doi:10.1137/0722015
[42] Raynal, M.L.: On some nonlinear problems of diffusion. In: Volterra Equations, pp 251-266. Springer (1979) · Zbl 0425.45011
[43] Robinson, J.C.: Infinite-dimensional dynamical system: an introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge Texts Appl Math (2001) · Zbl 0980.35001
[44] Shi, DY; Tang, QL, Nonconforming H1-Galerkin mixed finite element method for strongly damped wave equations, Numer. Funct. Anal Optim., 34, 12, 1348-1369 (2013) · Zbl 1284.65138 · doi:10.1080/01630563.2013.809581
[45] Shukla, K.; Chan, J.; Maarten, V., A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation, Comput. Math Appl., 99, 113-132 (2021) · Zbl 1524.65598 · doi:10.1016/j.camwa.2021.08.003
[46] Thomée, V.; Wahlbin, L., Maximum-norm estimates for finite-element methods for a strongly damped wave equation, BIT Numer. Math., 44, 1, 165-179 (2004) · Zbl 1053.65077 · doi:10.1023/B:BITN.0000025091.78408.e4
[47] Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales (1995)
[48] Tzou, DY; Chiu, K., Temperature-dependent thermal lagging in ultrafast laser heating, Int. J Heat Mass Transf., 44, 9, 1725-1734 (2001) · Zbl 1091.74508 · doi:10.1016/S0017-9310(00)00215-5
[49] Van Rensburg, N.; Stapelberg, B., Existence and uniqueness of solutions of a general linear second-order hyperbolic problem, IMA J. Appl. Math., 84, 1, 1-22 (2019) · Zbl 1471.74023 · doi:10.1093/imamat/hxy048
[50] Wang, J.; Wang, R.; Zhai, Q.; Zhang, R., A systematic study on weak Galerkin finite element methods for second order elliptic problems, J. Sci Comput., 74, 3, 1369-1396 (2018) · Zbl 1398.65311 · doi:10.1007/s10915-017-0496-6
[51] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl Math., 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[52] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second order elliptic problems, Math Comp., 83, 289, 2101-2126 (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[53] Wang, X.; Gao, F.; Sun, Z., Weak Galerkin finite element method for viscoelastic wave equations, J. Comput. Appl Math., 375, 112816 (2020) · Zbl 1435.65168 · doi:10.1016/j.cam.2020.112816
[54] Ye, X.; Zhang, S., A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl Math., 371, 112699 (2020) · Zbl 1434.65285 · doi:10.1016/j.cam.2019.112699
[55] Ye, X.; Zhang, S., A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numer Anal., 58, 5, 2572-2588 (2020) · Zbl 1452.65362 · doi:10.1137/19M1276601
[56] Ye, X.; Zhang, S., A stabilizer free WG method for the stokes equations with order two superconvergence on polytopal mesh, Electron. Res Arch., 29, 6, 3609-3627 (2021) · Zbl 1490.65292 · doi:10.3934/era.2021053
[57] Ye, X.; Zhang, S., A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III, J. Comput. Appl. Math., 394, 113538 (2021) · Zbl 1475.65172 · doi:10.1016/j.cam.2021.113538
[58] Ye, X.; Zhang, S., Achieving superconvergence by one-dimensional discontinuous finite elements: The CDG method, East Asian J. Appl. Math., 12, 4, 781-790 (2022) · Zbl 1495.65222 · doi:10.4208/eajam.121021.200122
[59] Zhai, Q.; Zhang, R.; Malluwawadu, N.; Hussain, S., The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys, 24, 152-166 (2018) · Zbl 1488.65672 · doi:10.4208/cicp.OA-2017-0052
[60] Zhang, H.; Zou, Y.; Xu, Y.; Zhai, Q.; Yue, H., Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal Model, 13, 4, 525-544 (2016) · Zbl 1362.65110
[61] Zhen-dong, L., The mixed finite element method for the non stationary conduction convection problems, Chinese J. Numer. Math. Appl., 20, 2, 29-59 (1998) · Zbl 0919.76050
[62] Zhou, S.; Gao, F.; Li, B.; Sun, Z., Weak Galerkin finite element method with second-order accuracy in time for parabolic problems, Appl. Math Lett., 90, 118-123 (2019) · Zbl 1410.65387 · doi:10.1016/j.aml.2018.10.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.