×

Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium. (English) Zbl 1472.65120

Summary: Galerkin finite element method is applied to dual-phase-lag bio heat model in heterogeneous medium. Well-posedness of the model interface problem and a priori estimates of its solutions are established. Optimal a priori error estimates for both semidiscrete and fully discrete schemes are proved in \(L^\infty (L^2)\) norm. The fully discrete space-time finite element discretizations is based on second order in time Newmark scheme. Finally, numerical results for two dimensional test problems are presented in support of our theoretical findings. Finite element algorithm presented here can contribute to a variety of engineering and medical applications.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
35B45 A priori estimates in context of PDEs
92C05 Biophysics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Adams, RA; Fournier, JJF, Sobolev Spaces (2003), Amsterdam: Academic Press, Amsterdam · Zbl 1098.46001
[2] Ammari, H.; Chen, D.; Zou, J., Well-posedness of an electric interface model and its finite element approximation, Math. Models Meth. Appl. Sci., 26, 601-625 (2016) · Zbl 1331.78025 · doi:10.1142/S0218202516500111
[3] Antonietti, P., Mazzieri, I., Muhr, M., Nikolić, V., Wohlmuth, B.: A high-order discontinuous Galerkin method for nonlinear sound waves, arXiv:1912.02281 (2019) · Zbl 1440.65128
[4] Baker, GA, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal., 13, 564-576 (1976) · Zbl 0345.65059 · doi:10.1137/0713048
[5] Basson, M.; Stapelberg, B.; Van Rensburg, NFJ, Error estimates for semi-discrete and fully discrete galerkin finite element approximations of the general linear second-order hyperbolic equation, Numer. Funct. Anal. Optim., 38, 466-485 (2017) · Zbl 1372.65269 · doi:10.1080/01630563.2016.1254655
[6] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 175-202 (1998) · Zbl 0909.65085 · doi:10.1007/s002110050336
[7] Dai, W.; Wang, H.; Jordan, PM; Mickens, RE; Bejan, A., A mathematical model for skin burn injury induced by radiation heating, Int. Jour. Heat Mass Transf., 51, 5497-5510 (2008) · Zbl 1151.80302 · doi:10.1016/j.ijheatmasstransfer.2008.01.006
[8] Deka, B.; Ahmed, T., Convergence of finite element method for linear second order wave equations with discontinuous coefficients, Numer. Methods Partial Differ. Equ., 29, 1522-1542 (2013) · Zbl 1274.65255 · doi:10.1002/num.21765
[9] Deka, B., Dutta, J.: \(L^{\infty }(L^2)\) and \(L^{\infty }(H^1)\) norms error estimates in finite element methods for electric interface model, accepted in Applicable Analysis, doi:10.1080/00036811.2019.1643010 · Zbl 1468.65139
[10] Joseph, DD; Preziosi, L., Heat Waves, Rev. Mod. Phys., 61, 41-73 (1989) · Zbl 1129.80300 · doi:10.1103/RevModPhys.61.41
[11] Joshi, AA; Majumdar, A., Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys., 74, 31-39 (1993) · doi:10.1063/1.354111
[12] Kaltenbacher, B.; Lasiecka, I., Global existence and exponential decay rates for the Westervelt equation, Discrete Contin. Dyn. Syst.-S, 2, 503-523 (2009) · Zbl 1180.35108 · doi:10.3934/dcdss.2009.2.503
[13] Karaa, S., Error estimates for finite element approximations of a viscous wave equation, Numer. Funct. Anal. Optim., 32, 750-767 (2011) · Zbl 1242.65185 · doi:10.1080/01630563.2011.580874
[14] Kumar, P.; Kumar, D.; Rai, KN, A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment, J. Thermal Biol., 49, 98-105 (2015) · doi:10.1016/j.jtherbio.2015.02.008
[15] Lagnese, JE; Leugering, G.; Schmidt, EJPG, Modeling Analysis and Control of Dynamic Elastic Multi-link Structures (1994), Boston: Birkhäuser, Boston · Zbl 0810.73004 · doi:10.1007/978-1-4612-0273-8
[16] Larsson, S.; Thomée, V.; Wahlbin, LB, Finite element methods for a strongly damped wave equation, IMA J. Numer. Anal., 11, 115-142 (1991) · Zbl 0718.65070 · doi:10.1093/imanum/11.1.115
[17] Li, JZ; Melenk, JM; Wohlmuth, B.; Zou, J., Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60, 19-37 (2010) · Zbl 1208.65168 · doi:10.1016/j.apnum.2009.08.005
[18] Lim, H.; Kim, S.; Douglas, J., Numerical methods for viscous and nonviscous wave equations, Appl. Numer. Math., 57, 194-212 (2007) · Zbl 1116.65104 · doi:10.1016/j.apnum.2006.02.004
[19] Lions, JL; Magenes, E., Non-Homogeneous Boundary Value Problems and Application (1972), New York: Springer-Verlag, New York · Zbl 0223.35039 · doi:10.1007/978-3-642-65217-2
[20] Liu, K-C; Chen, H-T, Investigation for the dual phase lag behavior of bio-heat transfer, Int. J. Thermal Sci., 49, 1138-1146 (2010) · doi:10.1016/j.ijthermalsci.2010.02.007
[21] Luikov, A., Application of irreversible thermodynamics methods to investigation of heat and mass transfer, Int. J. Heat Mass Transf., 9, 139-152 (1966) · doi:10.1016/0017-9310(66)90128-1
[22] Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, MK, Experimental evidence of hyperbolic heat conduction in processed meat, J. Heat Transf., 117, 568-573 (1995) · doi:10.1115/1.2822615
[23] Narasimhan, A.; Sadasivam, S., Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation, Int. J. Heat Mass Transf., 60, 591-597 (2013) · doi:10.1016/j.ijheatmasstransfer.2013.01.010
[24] Nikolić, V.; Kaltenbacher, B., On higher regularity for the Westervelt equation with strong nonlinear damping, Appl. Anal., 95, 2824-2840 (2016) · Zbl 1353.35093 · doi:10.1080/00036811.2015.1114607
[25] Nikolić, V.; Wohlmuth, B., A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation, SIAM J. Numer. Anal., 57, 1897-1918 (2019) · Zbl 1476.65247 · doi:10.1137/19M1240873
[26] Pani, AK; Yuan, JY, Mixed finite element method for a strongly damped wave equation, Numer. Methods Partial Differ. Equ., 17, 105-119 (2001) · Zbl 0982.65105 · doi:10.1002/1098-2426(200103)17:2<105::AID-NUM2>3.0.CO;2-F
[27] Pennes, HH, Analysis of tissue and arterial temperature in the resting human forearm, J. Appl. Physiol., 1, 93-122 (1948) · doi:10.1152/jappl.1948.1.2.93
[28] Qiu, TQ; Tien, CL, Short-pulse laser heating on metals, Int. J. Heat Mass Transf., 35, 719-726 (1992) · doi:10.1016/0017-9310(92)90131-B
[29] Ren, X.; Wei, J., On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Am. Math. Soc., 343, 749-763 (1994) · Zbl 0804.35042 · doi:10.1090/S0002-9947-1994-1232190-7
[30] Robinson, J.C.: Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (2001) · Zbl 0980.35001
[31] Showalter, RE, Hilbert Space Methods for Partial Differential Equations (1977), London: Pitman, London · Zbl 0364.35001
[32] Tzou, DY, A unified field approach for heat conduction from macro- to micro-scales, Trans. ASME, 117, 8-16 (1995) · doi:10.1115/1.2822329
[33] Tzou, DY, Macro- to Microscale Heat Transfer: The Lagging Behavior (1996), Washington, DC: Taylor & Francis, Washington, DC
[34] Tzou, DY; Chiu, KS, Temperature-dependent thermal lagging in ultrafast laser heating, Int. J. Heat Mass Transf., 44, 1725-1734 (2001) · Zbl 1091.74508 · doi:10.1016/S0017-9310(00)00215-5
[35] van Rensburg, NFJ; van der Merwe, AJ, Analysis of the solvability of linear vibration models, Appl. Anal., 81, 1143-1159 (2002) · Zbl 1108.74338 · doi:10.1080/0003681021000029837
[36] van Rensburg, NFJ; Stapelberg, B., Existence and uniqueness of solutions of a general linear second-order hyperbolic problem, IMA J. Appl. Math., 84, 1-22 (2019) · Zbl 1471.74023 · doi:10.1093/imamat/hxy048
[37] Vedavarz, A.; Kumar, S.; Moallemi, MK, Significance of non-fourier heat waves in conduction, J. Heat Transf., 116, 221-226 (1994) · doi:10.1115/1.2910859
[38] Xu, F., Lu, T.J., Seffen, K.A., Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62, 1-35 (2009)
[39] Xu, F.; Lu, TJ; Seffen, KA, Non-Fourier analysis of skin biothermomechanics, Int. Jour. Heat Mass Transf., 51, 2237-2259 (2008) · Zbl 1144.80358 · doi:10.1016/j.ijheatmasstransfer.2007.10.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.