×

On the measure of maximal entropy for finite horizon Sinai billiard maps. (English) Zbl 1444.37020

The Sinai billiard flow on the two-torus is a dispersing non-differentiable dynamical system where the singularities are due to the “nongrazing orbits,” that is, those that are not tangent to a scatterer.
In this paper the authors study the Sinai billiard map, which is the return map of the single point particle to the scatterers in the Sinai billiard flow.
The Sinai billiard map is discontinuous. It is the analogue of a periodic planar Lorentz gas model for the motion of a single dilute electron in a metal. The scatterers of the Sinai map correspond to the atoms of the metal and, in this paper, they are assumed to be strictly convex. The authors propose a definition for the topological entropy and they study measures of maximal entropy for this map.
They prove that this topological entropy is not smaller than the value given by the variational principle, and that it is equal to the definition given by R. Bowen [Trans. Am. Math. Soc. 184, 125–136 (1974; Zbl 0274.54030)] of topological entropy for continuous maps using spanning \(\epsilon\)-separated and \(\epsilon\)-spanning sets.
Under a mild condition of sparse recurrence to the singularities, the authors, using a transfer operator acting on a space of anisotropic distributions, construct an invariant probability measure of maximal entropy for the Sinai billiard map. They show that this measure has full support and is Bernoulli, that it is the unique measure of maximal entropy and that it is different from the smooth invariant measure except if all nongrazing periodic orbits have multiplier equal to the topological entropy. They also prove that the topological entropy of this map is equal to the Bowen-Pesin-Pitskel topological entropy of the restriction of the Sinai billiard map to a noncompact domain of continuity. Finally, they give a lower bound for the number of period orbits of order \(n\) of the Sinai billiard map. The lower bound is exponential in \(n\) multiplied by the topological entropy of the map.

MSC:

37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37C55 Periodic and quasi-periodic flows and diffeomorphisms
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37C83 Dynamical systems with singularities (billiards, etc.)
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37B40 Topological entropy
37A25 Ergodicity, mixing, rates of mixing
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47B38 Linear operators on function spaces (general)

Citations:

Zbl 0274.54030

References:

[1] Baladi, Viviane; Demers, Mark F.; Liverani, Carlangelo, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math., 211, 1, 39-177 (2018) · Zbl 1382.37037 · doi:10.1007/s00222-017-0745-1
[2] Gaspard, P.; Baras, F., Chaotic scattering and diffusion in the Lorentz gas, Phys. Rev. E (3), 51, 6, 5332-5352 (1995) · doi:10.1103/PhysRevE.51.5332
[3] Bedford, Eric; Diller, Jeffrey, Energy and invariant measures for birational surface maps, Duke Math. J., 128, 2, 331-368 (2005) · Zbl 1076.37031 · doi:10.1215/S0012-7094-04-12824-6
[4] Bowen, Rufus, Periodic points and measures for Axiom \(A\) diffeomorphisms, Trans. Amer. Math. Soc., 154, 377-397 (1971) · Zbl 0212.29103 · doi:10.2307/1995452
[5] Bowen, Rufus, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184, 125-136 (1973) · Zbl 0274.54030 · doi:10.2307/1996403
[6] Bowen, Rufus, Maximizing entropy for a hyperbolic flow, Math. Systems Theory, 7, 4, 300-303 (1974) · Zbl 0303.58014 · doi:10.1007/BF01795948
[7] Bowen, Rufus, Some systems with unique equilibrium states, Math. Systems Theory, 8, 3, 193-202 (1974/75) · Zbl 0299.54031 · doi:10.1007/BF01762666
[8] Brin, M.; Katok, A., On local entropy. Geometric dynamics, Rio de Janeiro, 1981, Lecture Notes in Math. 1007, 30-38 (1983), Springer, Berlin · Zbl 0533.58020 · doi:10.1007/BFb0061408
[9] Bunimovich, L. A.; Sina\u{\i}, Ya. G.; Chernov, N. I., Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk. Russian Math. Surveys, 45 45, 3, 105-152 (1990) · Zbl 0721.58036 · doi:10.1070/RM1990v045n03ABEH002355
[10] Burns, K.; Climenhaga, V.; Fisher, T.; Thompson, D. J., Unique equilibrium states for geodesic flows in nonpositive curvature, Geom. Funct. Anal., 28, 5, 1209-1259 (2018) · Zbl 1401.37038 · doi:10.1007/s00039-018-0465-8
[11] Burago, D.; Ferleger, S.; Kononenko, A., Topological entropy of semi-dispersing billiards, Ergodic Theory Dynam. Systems, 18, 4, 791-805 (1998) · Zbl 0922.58064 · doi:10.1017/S0143385798108246
[12] J. Buzzi, The degree of Bowen factors and injective codings of diffeomorphisms, arXiv:1807.04017, v2 (August 2019). · Zbl 1440.37051
[13] J. Chen, F. Wang, and H.-K. Zhang, Markov partition and thermodynamic formalism for hyperbolic systems with singularities, arXiv:1709.00527
[14] Chernov, N. I., Topological entropy and periodic points of two-dimensional hyperbolic billiards, Funktsional. Anal. i Prilozhen.. Funct. Anal. Appl., 25 25, 1, 39-45 (1991) · Zbl 0729.58047 · doi:10.1007/BF01090675
[15] Chernov, N. I., Sinai billiards under small external forces, Ann. Henri Poincar\'{e}, 2, 2, 197-236 (2001) · Zbl 0994.70009 · doi:10.1007/PL00001034
[16] Chernov, Nikolai; Markarian, Roberto, Chaotic billiards, Mathematical Surveys and Monographs 127, xii+316 pp. (2006), American Mathematical Society, Providence, RI · Zbl 1101.37001 · doi:10.1090/surv/127
[17] Chernov, N. I.; Haskell, C., Nonuniformly hyperbolic \(K\)-systems are Bernoulli, Ergodic Theory Dynam. Systems, 16, 1, 19-44 (1996) · Zbl 0853.58081 · doi:10.1017/S0143385700008695
[18] Chernov, N. I.; Troubetzkoy, S., Measures with infinite Lyapunov exponents for the periodic Lorentz gas, J. Statist. Phys., 83, 1-2, 193-202 (1996) · Zbl 1081.82503 · doi:10.1007/BF02183645
[19] Knieper, Gerhard, The uniqueness of the measure of maximal entropy for geodesic flows on rank \(1\) manifolds, Ann. of Math. (2), 148, 1, 291-314 (1998) · Zbl 0946.53045 · doi:10.2307/120995
[20] Demers, Mark F.; Wright, Paul; Young, Lai-Sang, Entropy, Lyapunov exponents and escape rates in open systems, Ergodic Theory Dynam. Systems, 32, 4, 1270-1301 (2012) · Zbl 1281.37013 · doi:10.1017/S0143385711000344
[21] Demers, Mark F.; Zhang, Hong-Kun, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5, 4, 665-709 (2011) · Zbl 1321.37034 · doi:10.3934/jmd.2011.5.665
[22] Demers, Mark F.; Zhang, Hong-Kun, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys., 324, 3, 767-830 (2013) · Zbl 1385.37050 · doi:10.1007/s00220-013-1820-0
[23] Demers, Mark F.; Zhang, Hong-Kun, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27, 3, 379-433 (2014) · Zbl 1347.37070 · doi:10.1088/0951-7715/27/3/379
[24] Demers, Mark F.; Rey-Bellet, Luc; Zhang, Hong-Kun, Fluctuation of the entropy production for the Lorentz gas under small external Forces, Comm. Math. Phys., 363, 2, 699-740 (2018) · Zbl 1403.82016 · doi:10.1007/s00220-018-3228-3
[25] J. De Simoi, V. Kaloshin, and M. Leguil, Marked length spectral determination of analytic chaotic billiards with axial symmetries arXiv:1905.00890, v3 (August 2019) · Zbl 1522.37041
[26] Diller, Jeffrey; Dujardin, Romain; Guedj, Vincent, Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure, Comment. Math. Helv., 86, 2, 277-316 (2011) · Zbl 1297.37022 · doi:10.4171/CMH/224
[27] Diller, Jeffrey; Dujardin, Romain; Guedj, Vincent, Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 43, 2, 235-278 (2010) · Zbl 1197.37059 · doi:10.24033/asens.2120
[28] Dolgopyat, Dmitry, On decay of correlations in Anosov flows, Ann. of Math. (2), 147, 2, 357-390 (1998) · Zbl 0911.58029 · doi:10.2307/121012
[29] Dolgopyat, Dmitry, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems, 18, 5, 1097-1114 (1998) · Zbl 0918.58058 · doi:10.1017/S0143385798117431
[30] Dujardin, Romain, Laminar currents and birational dynamics, Duke Math. J., 131, 2, 219-247 (2006) · Zbl 1099.37037 · doi:10.1215/S0012-7094-06-13122-8
[31] Gallavotti, Giovanni; Ornstein, Donald S., Billiards and Bernoulli schemes, Comm. Math. Phys., 38, 83-101 (1974) · Zbl 0313.58017
[32] Friedland, Shmuel, Entropy of holomorphic and rational maps: a survey. Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ. 54, 113-128 (2007), Cambridge Univ. Press, Cambridge · Zbl 1156.28006 · doi:10.1017/CBO9780511755187.005
[33] Garrido, P. L., Kolmogorov-Sinai entropy, Lyapunov exponents, and mean free time in billiard systems, J. Statist. Phys., 88, 3-4, 807-824 (1997) · Zbl 0918.58048 · doi:10.1023/B:JOSS.0000015173.74708.2a
[34] Gou\"{e}zel, S\'{e}bastien; Liverani, Carlangelo, Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differential Geom., 79, 3, 433-477 (2008) · Zbl 1166.37010
[35] Gurevi\v{c}, B. M., Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR, 187, 715-718 (1969) · Zbl 0194.49602
[36] Gurevi\v{c}, B. M., Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR, 192, 963-965 (1970)
[37] Gutkin, Eugene, Billiard dynamics: an updated survey with the emphasis on open problems, Chaos, 22, 2, 026116, 13 pp. (2012) · Zbl 1331.37001 · doi:10.1063/1.4729307
[38] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes \'{E}tudes Sci. Publ. Math., 51, 137-173 (1980) · Zbl 0445.58015
[39] Katok, Anatole, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn., 1, 4, 545-596 (2007) · Zbl 1149.37001 · doi:10.3934/jmd.2007.1.545
[40] Katok, Anatole; Hasselblatt, Boris, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, xviii+802 pp. (1995), Cambridge University Press, Cambridge · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[41] Katok, Anatole; Strelcyn, Jean-Marie; Ledrappier, F.; Przytycki, F., Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics 1222, viii+283 pp. (1986), Springer-Verlag, Berlin · Zbl 0658.58001 · doi:10.1007/BFb0099031
[42] Knieper, Gerhard, The uniqueness of the measure of maximal entropy for geodesic flows on rank \(1\) manifolds, Ann. of Math. (2), 148, 1, 291-314 (1998) · Zbl 0946.53045 · doi:10.2307/120995
[43] Lima, Yuri; Matheus, Carlos, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 51, 1, 1-38 (2018) · Zbl 1444.37011 · doi:10.24033/asens.2350
[44] Liverani, Carlangelo, Decay of correlations, Ann. of Math. (2), 142, 2, 239-301 (1995) · Zbl 0871.58059 · doi:10.2307/2118636
[45] Ma\~{n}\'{e}, Ricardo, A proof of Pesin’s formula, Ergodic Theory Dynamical Systems, 1, 1, 95-102 (1981) · Zbl 0489.58018 · doi:10.1017/s0143385700001188
[46] Margulis, G. A., Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Prilo\v{z}en., 3, 4, 89-90 (1969) · Zbl 0207.20305
[47] Margulis, Grigoriy A., On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, vi+139 pp. (2004), Springer-Verlag, Berlin · Zbl 1140.37010 · doi:10.1007/978-3-662-09070-1
[48] Ornstein, D. S., Imbedding Bernoulli shifts in flows. Contributions to Ergodic Theory and Probability, Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970, 178-218 (1970), Springer, Berlin · Zbl 0227.28013
[49] Ornstein, Donald S.; Weiss, Benjamin, Geodesic flows are Bernoullian, Israel J. Math., 14, 184-198 (1973) · Zbl 0256.58006 · doi:10.1007/BF02762673
[50] Parry, William; Pollicott, Mark, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2), 118, 3, 573-591 (1983) · Zbl 0537.58038 · doi:10.2307/2006982
[51] Pesin, Yakov B., Dimension theory in dynamical systems, Chicago Lectures in Mathematics, xii+304 pp. (1997), University of Chicago Press, Chicago, IL · Zbl 0895.58033 · doi:10.7208/chicago/9780226662237.001.0001
[52] Pesin, Ya. B.; Pitskel\cprime, B. S., Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18, 4, 50-63, 96 (1984) · Zbl 0567.54027
[53] Pollicott, Mark; Sharp, Richard, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math., 120, 5, 1019-1042 (1998) · Zbl 0999.37010
[54] Pollicott, Mark; Sharp, Richard, Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems, 21, 2, 545-562 (2001) · Zbl 0988.37024 · doi:10.1017/S0143385701001274
[55] Reed, Michael; Simon, Barry, Methods of modern mathematical physics. I, xv+400 pp. (1980), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York · Zbl 0459.46001
[56] V.A. Rokhlin and Ya.G. Sinai, Construction and properties of invariant measurable partitions, Soviet Math. Dokl. 2 (1962) 1611-1614 · Zbl 0161.34301
[57] Sarig, Omri M., Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn., 5, 3, 593-608 (2011) · Zbl 1276.37025 · doi:10.3934/jmd.2011.5.593
[58] Sarig, Omri M., Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26, 2, 341-426 (2013) · Zbl 1280.37031 · doi:10.1090/S0894-0347-2012-00758-9
[59] Schwartz, Laurent, Th\'{e}orie des distributions, Publications de l’Institut de Math\'{e}matique de l’Universit\'{e} de Strasbourg, No. IX-X. Nouvelle \'{e}dition, enti\'{e}rement corrig\'{e}e, refondue et augment\'{e}e, xiii+420 pp. (1966), Hermann, Paris · Zbl 0962.46025
[60] Sina\u{\i}, Ja. G., Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25, 2 (152), 141-192 (1970) · Zbl 0252.58005
[61] Sina\u{\i}, Ya. G.; Chernov, N. I., Ergodic properties of some systems of two-dimensional disks and three-dimensional balls, Uspekhi Mat. Nauk, 42, 3(255), 153-174, 256 (1987) · Zbl 0644.58007
[62] Stojanov, Luchezar, An estimate from above of the number of periodic orbits for semi-dispersed billiards, Comm. Math. Phys., 124, 2, 217-227 (1989) · Zbl 0819.58032
[63] Stoyanov, Luchezar, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math., 123, 4, 715-759 (2001) · Zbl 0994.37018
[64] Walters, Peter, An introduction to ergodic theory, Graduate Texts in Mathematics 79, ix+250 pp. (1982), Springer-Verlag, New York-Berlin · Zbl 0958.28011
[65] Young, Lai-Sang, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147, 3, 585-650 (1998) · Zbl 0945.37009 · doi:10.2307/120960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.