×

Analysis of a semi-implicit and structure-preserving finite element method for the incompressible MHD equations with magnetic-current formulation. (English) Zbl 1531.65188

Summary: In this paper, we investigate a fully discrete finite element scheme for the incompressible magnetohydrodynamic (MHD) equations with magnetic-current formulation that was introduced in [K. Hu and J. Xu, Sci. Sin., Math. 46, No. 7, 967–980 (2016; Zbl 1499.76072)]. We discretize the system by the semi-implicit Euler scheme in time and a mixed finite element approach together with finite element exterior calculus in space. The resulting scheme enjoys the structure-preserving feature that it can always produce an exactly divergence-free magnetic induction on the discrete level. The unique solvability and unconditional stability of the scheme are also proved rigorously. By utilizing the energy argument, error estimates for the velocity, magnetic induction, current density and induced electric field are further established under the low regularity hypothesis for the exact solutions. Numerical results are provided to verify the theoretical analysis and to show the effectiveness of the proposed scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
35Q35 PDEs in connection with fluid mechanics

Citations:

Zbl 1499.76072

Software:

FreeFem++
Full Text: DOI

References:

[1] Davidson, P. A., xviii+431
[2] Goedbloed, J. P.H.; Poedts, S., Principles of magnetohydrodynamics: With applications to laboratory and astrophysical plasmas (2004), Cambridge University Press
[3] Gerbeau, J.-F.; Le Bris, C.; Lelièvre, T., xiv+310
[4] Goedbloed, J. P.; Keppens, R.; Poedts, S., Advanced magnetohydrodynamics: With applications to laboratory and astrophysical plasmas (2010), Cambridge University Press
[5] Gunzburger, M. D.; Meir, A. J.; Peterson, J. S., On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math Comp, 194, 523-563 (1991) · Zbl 0731.76094
[6] Schötzau, D., Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer Math, 4, 771-800 (2004) · Zbl 1098.76043
[7] He, Y., Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J Numer Anal, 2, 767-801 (2015) · Zbl 1312.76061
[8] Gao, H.; Qiu, W., A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput Methods Appl Mech Engrg, 982-1001 (2019) · Zbl 1440.76061
[9] Yang, J.; Mao, S., Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl Math Lett, 107467, 8 (2021) · Zbl 1524.76530
[10] Hiptmair, R.; Li, L.; Mao, S.; Zheng, W., A fully divergence-free finite element method for magnetohydrodynamic equations. Math Models Methods Appl Sci, 4, 659-695 (2018) · Zbl 1393.65031
[11] Brackbill, J. U.; Barnes, D. C., The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J Comput Phys, 3, 426-430 (1980) · Zbl 0429.76079
[12] Dai, W.; Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows. Astrophys J, 317-335 (1998)
[13] Tóth, G., The \(\nabla \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes. J Comput Phys, 2, 605-652 (2000) · Zbl 0980.76051
[14] Zhang, G.; He, Y.; Yang, D., Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain. Comput Math Appl, 7, 770-788 (2014) · Zbl 1362.76035
[15] Prohl, A., Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math Model Numer Anal, 6, 1065-1087 (2008) · Zbl 1149.76029
[16] Zhang, G.; Yang, J.; Bi, C., Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv Comput Math, 2, 505-540 (2018) · Zbl 1388.76159
[17] Li, L.; Zhang, D.; Zheng, W., A constrained transport divergence-free finite element method for incompressible MHD equations. J Comput Phys, 109980, 22 (2021) · Zbl 07511418
[18] Li, X.; Li, L., A conservative finite element solver for the induction equation of resistive MHD: vector potential method and constraint preconditioning. J Comput Phys (2022), Paper No. 111416, 20 · Zbl 07561091
[19] Hu, K.; Ma, Y.; Xu, J., Stable finite element methods preserving \(\nabla \cdot B = 0\) exactly for MHD models. Numer Math, 2, 371-396 (2017) · Zbl 1381.76174
[20] Ma, Y.; Xu, J.; Zhang, G.-D., Error estimates for structure-preserving discretization of the incompressible MHD system (2016), arXiv: Numerical Analysis
[21] Qiu, W.; Shi, K., Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible magnetohydrodynamics equations. Comput Math Appl, 10, 2150-2161 (2020) · Zbl 1452.76100
[22] Hu, K.; Xu, J., Stable magnetic field-current finite element formulation for magnetohydrodynamics system (in Chinese). Sci China Math, 7, 967-980 (2016) · Zbl 1499.76072
[23] Hu, K.; Xu, J., Structure-preserving finite element methods for stationary MHD models. Math Comp, 316, 553-581 (2019) · Zbl 1405.65151
[24] Girault, V.; Raviart, P.-A., x+374, Theory and algorithms
[25] Boffi, D.; Brezzi, F.; Fortin, M., xiv+685
[26] John, V., xiii+812
[27] Costabel, M.; Dauge, M., Singularities of maxwell’s equations on polyhedral domains, 69-76 · Zbl 0904.35089
[28] Costabel, M.; Dauge, M., Singularities of electromagnetic fields in polyhedral domains. Arch Ration Mech Anal, 3, 221-276 (2000) · Zbl 0968.35113
[29] Heywood, J. G.; Rannacher, R., Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J Numer Anal, 2, 353-384 (1990) · Zbl 0694.76014
[30] Zhang, G., Decoupled algorithms and preconditioning structure preserving method for magnetohydrodynamics models, 1-114 (2018), Xi’an Jiaotong University, (PhD Dissertation)
[31] Li, B.; Sun, W., Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J Numer Anal, 4, 1959-1977 (2013) · Zbl 1311.76067
[32] Christiansen, S. H.; Hu, J.; Hu, K., Nodal finite element de rham complexes. Numer Math, 2, 411-446 (2018) · Zbl 1397.65256
[33] Laakmann, F.; Farrell, P. E.; Mitchell, L., An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers. SIAM J Sci Comput, 4, B1018-B1044 (2022) · Zbl 1505.65305
[34] Hecht, F., New development in FreeFem++. J Numer Math, 3-4, 251-265 (2012) · Zbl 1266.68090
[35] Ma, Y.; Hu, K.; Hu, X.; Xu, J., Robust preconditioners for incompressible MHD models. J Comput Phys, 721-746 (2016) · Zbl 1349.76629
[36] Laakmann, F.; Farrell, P. E.; Mitchell, L., An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers. SIAM J Sci Comput, 4, B1018-B1044 (2022) · Zbl 1505.65305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.