×

Connection between the symmetric discrete AKP system and bilinear ABS lattice equations. (English) Zbl 07864744

Summary: In this paper, we show that all the bilinear Adler-Bobenko-Suris (ABS) equations (except Q2 and Q4) can be obtained from symmetric discrete AKP system by taking proper reductions and continuum limits. Among the bilinear ABS equations, a simpler bilinear form of the ABS H2 equation is given. In addition, an 8-point 3-dimensional lattice equation and an 8-point 4-dimensional lattice equation are obtained as by-products. Both of them can be considered as extensions of the symmetric discrete AKP equation.

MSC:

37K60 Lattice dynamics; integrable lattice equations
39A36 Integrable difference and lattice equations; integrability tests
39A14 Partial difference equations

References:

[1] Hietarinta, J.; Joshi, N.; Nijhoff, F. W., Discrete Systems and Integrablity, 2016, Camb. Univ. Press: Camb. Univ. Press Cambridge · Zbl 1362.37130
[2] Hirota, R., Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan, 50, 3785-3791, 1981
[3] Miwa, T., On Hirota’s difference equations, Proc. Japan Acad. Ser. A Math. Sci., 58, 9-12, 1982 · Zbl 0508.39009
[4] Date, E.; Jimbo, M.; Miwa, T., Method for generating discrete soliton equations. III, J. Phys. Soc. Japan, 52, 388-393, 1983 · Zbl 0571.35105
[5] Ramani, A.; Grammaticos, B.; Satsuma, J., Integrability of multidimensional discrete systems, Phys. Lett. A, 169, 323-328, 1992
[6] Zabrodin, A., Hirota’s difference equations, Theoret. Math. Phys., 113, 1317-1392, 1997
[7] Adler, V. E.; Bobenko, A. I.; Suris, Y. B., Classification of integrable discrete equations of octahedron type, Int. Math. Res. Not. IMRN, 2012, 1822-1889, 2012 · Zbl 1277.39006
[8] Ohta, Y.; Hirota, R.; Tsujimoto, S.; Imai, T., Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy, J. Phys. Soc. Japan, 62, 1872-1886, 1993 · Zbl 0972.37536
[9] Li, S. S.; Nijhoff, F. W.; Sun, Y. Y.; Zhang, D. J., Symmetric discrete AKP and BKP equations, J. Phys. A, 54, Article 075201 pp., 2021, (19pp) · Zbl 1519.39003
[10] Alexandrov, A., KdV solves BKP, Proc. Natl. Acad. Sci., 118, 1-2, 2021
[11] Adler, V. E.; Bobenko, A. I.; Suris, Yu. B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys., 233, 513-543, 2003 · Zbl 1075.37022
[12] Atkinson, J.; Hietarinta, J.; Nijhoff, F. W., Seed and soliton solutions for Adler’s lattice equation, J. Phys. A, 40, F1-F8, 2007 · Zbl 1106.37048
[13] Atkinson, J.; Hietarinta, J.; Nijhoff, F. W., Soliton solutions for Q3, J. Phys. A, 41, Article 142001 pp., 2008, (11pp) · Zbl 1136.37036
[14] Nijhoff, F. W.; Atkinson, J.; Hietarinta, J., Soliton solutions for ABS lattice equations: I: Cauchy matrix approach, J. Phys. A, 42, Article 404005 pp., 2009, (34pp) · Zbl 1184.35281
[15] Hietarinta, J.; Zhang, D. J., Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization, J. Phys. A, 42, Article 404006 pp., 2009, (30pp) · Zbl 1184.35276
[16] Nijhoff, F. W.; Atkinson, J., Elliptic N-soliton solutions of ABS lattice equations, Int. Math. Res. Not. IMRN, 2010, 3837-3895, 2010 · Zbl 1217.37068
[17] Atkinson, J.; Nijhoff, F. W., A constructive approach to the soliton solutions of integrable quadrilateral lattice equations, Comm. Math. Phys., 299, 283-304, 2010 · Zbl 1198.35205
[18] Butler, S.; Joshi, N., An inverse scattering transform for the lattice potential KdV equation, Inverse Prob., 26, Article 115012 pp., 2010, (28pp) · Zbl 1204.35144
[19] Butler, S., Multidimensional inverse scattering of integrable lattice equations, Nonlinearity, 25, 1613-1634, 2012 · Zbl 1251.39003
[20] Zhang, D. J.; Zhao, S. L., Solutions to the ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math., 131, 72-103, 2013 · Zbl 1338.37113
[21] Shi, Y.; Nimmo, J. J.C.; Zhang, D. J., Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation, J. Phys. A, 47, Article 025205 pp., 2014, (11pp) · Zbl 1285.35098
[22] Zhang, D. D.; Zhang, D. J., Rational solutions to the ABS list: Transformation approach, SIGMA, 13, 078, 2017, (24pp) · Zbl 1383.35185
[23] Zhao, S. L.; Zhang, D. J., Rational solutions to Q \(3_\delta\) in the Adler-Bobenko-Suris list and degenerations, J. Nonlinear Math. Phys., 26, 107-132, 2019 · Zbl 1417.37242
[24] Vermeeren, M., A variational perspective on continuum limits of ABS and lattice GD equations, SIGMA, 15, 044, 2019, (35pp) · Zbl 1432.37097
[25] Chou, A. A.; Mesfun, M.; Zhang, D. J., A revisit to the ABS H2 equation, SIGMA, 17, 093, 2021, (19pp) · Zbl 1477.35216
[26] Atkinson, J., Bäcklund transformations for integrable lattice equations, J. Phys. A, 41, Article 135202 pp., 2008, (8pp) · Zbl 1148.82006
[27] Hietarinta, J., Searching for CAC-maps, J. Nonlinear Math. Phys., 12, 223-230, 2005 · Zbl 1091.37020
[28] Nimmo, J. J.C.; Freeman, N. C., Rational solutions of the Korteweg-de Vries equation in Wronskian form, Phys. Lett. A, 96, 443-446, 1983
[29] Hirota, R., A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys., 52, 1498-1512, 1974 · Zbl 1168.37322
[30] Nijhoff, F. W.; Quispel, G. R.W.; Capel, H. W., Direct linearization of nonlinear difference-difference equations, Phys. Lett. A, 97, 125-128, 1983
[31] Date, E.; Jimbo, M.; Miwa, T., Method for generating discrete soliton equations. II, J. Phys. Soc. Japan, 51, 4125-4131, 1982
[32] Chen, Z. Y.; Bi, J. B.; Chen, D. Y., Novel solutions of KdV equation, Commun. Theor. Phys., 41, 397-399, 2004 · Zbl 1167.35462
[33] Hietarinta, J.; Zhang, D. J., Discrete Boussinesq-type equations, (Euler, N.; Zhang, D. J., Nonlinear Systems and their Remarkable Mathematical Structures, Vol. 3, 2021, CRC Press, Taylor & Francis: CRC Press, Taylor & Francis Boca Raton), 54-101
[34] Nijhoff, F. W.; Sun, Y. Y.; Zhang, D. J., Elliptic solutions of Boussinesq type lattice equations and the elliptic \(N\) th root of unity, Comm. Math. Phys., 399, 599-650, 2023 · Zbl 1518.39003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.