×

A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. (English) Zbl 1439.74453

Summary: The isogeometric analysis associated with a novel quasi-3D shear deformation theory is proposed to investigate size-dependent behaviours of functionally graded microplates. The modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The proposed approach is successfully applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions in which some benchmark numerical examples are presented. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and aspect ratios on the responses of the microplates.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74A10 Stress
74K20 Plates
74M25 Micromechanics of solids

Software:

GeoPDEs; MUL2; ISOGAT

References:

[1] Trinh, L. C.; Vo, T. P.; Osofero, A. I.; Lee, J., Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach, Compos. Struct. (2015)
[2] Vo, T. P.; Thai, H.-T.; Nguyen, T.-K.; Maheri, A.; Lee, J., Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Eng. Struct., 64, 12-22 (2014)
[3] Vo, T. P.; Thai, H.-T.; Nguyen, T.-K.; Inam, F., Static and vibration analysis of functionally graded beams using refined shear deformation theory, Meccanica, 49, 1, 155-168 (2013) · Zbl 1383.74057
[4] Asghari, M.; Ahmadian, M. T.; Kahrobaiyan, M. H.; Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams, Mater. Des., 31, 5, 2324-2329 (2010)
[5] Nguyen, V.-H.; Nguyen, T.-K.; Thai, H.-T.; Vo, T. P., A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates, Composites B, 66, 233-246 (2014)
[6] Thai, H.-T.; Vo, T. P., A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Appl. Math. Model., 37, 5, 3269-3281 (2013) · Zbl 1351.74034
[7] Natarajan, S.; Chakraborty, S.; Thangavel, M.; Bordas, S.; Rabczuk, T., Size-dependent free flexural vibration behavior of functionally graded nanoplates, Comput. Mater. Sci., 65, 74-80 (2012)
[8] Reddy, J. N., Analysis of functionally graded plates, Internat. J. Numer. Methods Engrg., 47, 1-3, 663-684 (2000) · Zbl 0970.74041
[9] Mantari, J. L., Refined and generalized hybrid type quasi-3d shear deformation theory for the bending analysis of functionally graded shells, Composites B, 83, 142-152 (2015)
[10] Torabi, J.; Kiani, Y.; Eslami, M. R., Linear thermal buckling analysis of truncated hybrid FGM conical shells, Composites B, 50, 265-272 (2013)
[11] Tornabene, F., Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Engrg., 198, 37-40, 2911-2935 (2009) · Zbl 1229.74062
[12] Fu, Y.; Du, H.; Huang, W.; Zhang, S.; Hu, M., TiNi-based thin films in MEMS applications: a review, Sensors Actuators A, 112, 2-3, 395-408 (2004)
[13] Lee, Z.; Ophus, C.; Fischer, L. M.; Nelson-Fitzpatrick, N.; Westra, K. L.; Evoy, S.; Radmilovic, V.; Dahmen, U.; Mitlin, D., Metallic NEMS components fabricated from nanocomposite AlMo films, Nanotechnology, 17, 12 (2006), 3063. http://dx.doi.org/10.1088/0957-4484/17/12/042
[14] Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; Rossi, D. D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M., Carbon nanotube actuators, Science, 284, 5418, 1340-1344 (1999)
[15] Lau, K.-T.; Cheung, H.-Y.; Lu, J.; Yin, Y.-S.; Hui, D.; Li, H.-L., Carbon nanotubes for space and bio-engineering applications, J. Comput. Theoret. Nanosci., 5, 1, 23-35 (2008)
[16] Frankland, S. J.V.; Caglar, A.; Brenner, D. W.; Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube polymer interfaces, J. Phys. Chem. B, 106, 12, 3046-3048 (2002)
[17] Liew, K. M.; He, X. Q.; Wong, C. H., On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Mater., 52, 9, 2521-2527 (2004)
[19] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: Theory and experiment, Acta Metall. Mater., 42, 2, 475-487 (1994)
[20] Stolken, J. S.; Evans, A. G., A microbend test method for measuring the plasticity length scale, Acta Mater., 46, 14, 5109-5115 (1998)
[21] Lam, D.; Yang, F.; Chong, A.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys., 51, 8, 1477-1508 (2003) · Zbl 1077.74517
[22] Eringen, A. C., Nonlocal polar elastic continua, Internat. J. Engrg. Sci., 10, 1, 1-16 (1972) · Zbl 0229.73006
[23] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 12, 1825-1857 (1993) · Zbl 0791.73029
[24] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[25] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 1, 415-448 (1962) · Zbl 0112.38906
[26] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 4, 417-438 (1965)
[27] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Compos. Struct., 100, 385-397 (2013)
[28] Park, S. K.; Gao, X.-L., Variational formulation of a modified couple stress theory and its application to a simple shear problem, Z. Angew. Math. Phys., 59, 5, 904-917 (2007) · Zbl 1157.74014
[29] Park, S. K.; Gao, X.-L., Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16, 11 (2006), 2355. http://dx.doi.org/10.1088/0960-1317/16/11/015
[30] Xia, W.; Wang, L.; Yin, L., Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, Internat. J. Engrg. Sci., 48, 12, 2044-2053 (2010) · Zbl 1231.74277
[31] Ke, L.-L.; Wang, Y.-S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Compos. Struct., 93, 2, 342-350 (2011)
[32] Roque, C. M.C.; Fidalgo, D. S.; Ferreira, A. J.M.; Reddy, J. N., A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Compos. Struct., 96, 532-537 (2013)
[33] Thai, H.-T.; Vo, T. P.; Nguyen, T.-K.; Lee, J., Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory, Compos. Struct., 123, 337-349 (2015)
[34] Salamat-talab, M.; Nateghi, A.; Torabi, J., Static and dynamic analysis of third-order shear deformation fg micro beam based on modified couple stress theory, Int. J. Mech. Sci., 57, 1, 63-73 (2012)
[35] Tsiatas, G. C., A new Kirchhoff plate model based on a modified couple stress theory, Int. J. Solids Struct., 46, 13, 2757-2764 (2009) · Zbl 1167.74489
[36] Yin, L.; Qian, Q.; Wang, L.; Xia, W., Vibration analysis of microscale plates based on modified couple stress theory, Acta Mech. Solida Sin., 23, 5, 386-393 (2010)
[37] Ma, H. M.; Gao, X.-L.; Reddy, J. N., A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mech., 220, 1-4, 217-235 (2011) · Zbl 1237.74133
[38] Simsek, M.; Kocaturk, T.; Akbas, S. D., Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Compos. Struct., 95, 740-747 (2013)
[39] Nateghi, A.; Salamat-talab, M.; Rezapour, J.; Daneshian, B., Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory, Appl. Math. Model., 36, 10, 4971-4987 (2012) · Zbl 1252.74020
[40] Thai, H.-T.; Kim, S.-E., A size-dependent functionally graded Reddy plate model based on a modified couple stress theory, Composites B, 45, 1, 1636-1645 (2013)
[41] Thai, H.-T.; Choi, D.-H., Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory, Compos. Struct., 95, 142-153 (2013)
[42] Thai, H.-T.; Vo, T. P., A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory, Compos. Struct., 96, 376-383 (2013)
[43] Ke, L.-L.; Wang, Y.-S.; Yang, J.; Kitipornchai, S., Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, J. Sound Vib., 331, 1, 94-106 (2012)
[44] Ke, L.-L.; Yang, J.; Kitipornchai, S.; Bradford, M. A., Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., 94, 11, 3250-3257 (2012)
[45] He, L.; Lou, J.; Zhang, E.; Wang, Y.; Bai, Y., A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory, Compos. Struct., 130, 107-115 (2015)
[46] Reddy, J. N.; Kim, J., A nonlinear modified couple stress-based third-order theory of functionally graded plates, Compos. Struct., 94, 3, 1128-1143 (2012)
[47] Reddy, J. N.; Berry, J., Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress, Compos. Struct., 94, 12, 3664-3668 (2012)
[48] Kim, J.; Reddy, J. N., A general third-order theory of functionally graded plates with modified couple stress effect and the von Karman nonlinearity: theory and finite element analysis, Acta Mech., 226, 9, 2973-2998 (2015) · Zbl 1329.74171
[49] Reddy, J. N.; Romanoff, J.; Loya, J. A., Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory, Eur. J. Mech. A Solids (2015) · Zbl 1406.74448
[50] Della Croce, L.; Venini, P., Finite elements for functionally graded Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 193, 9-11, 705-725 (2004) · Zbl 1106.74408
[51] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 471-489 (2010) · Zbl 1227.74083
[52] Zhang, B.; He, Y.; Liu, D.; Gan, Z.; Shen, L., A non-classical Mindlin plate finite element based on a modified couple stress theory, Eur. J. Mech. A Solids, 42, 63-80 (2013) · Zbl 1406.74458
[53] Reddy, J. N., A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 4, 745-752 (1984) · Zbl 0549.73062
[54] Nguyen-Xuan, H.; Thai, C. H.; Nguyen-Thoi, T., Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory, Composites B, 55, 558-574 (2013)
[55] Arya, H.; Shimpi, R. P.; Naik, N. K., A zigzag model for laminated composite beams, Compos. Struct., 56, 1, 21-24 (2002)
[56] Senthilnathan, N. R.; Lim, S. P.; Lee, K. H.; Chow, S. T., Buckling of shear-deformable plates, AIAA J., 25, 9, 1268-1271 (1987)
[57] Shimpi, R. P., Refined plate theory and its variants, AIAA J., 40, 1, 137-146 (2002)
[58] Shimpi, R. P.; Patel, H. G., A two variable refined plate theory for orthotropic plate analysis, Int. J. Solids Struct., 43, 22-23, 6783-6799 (2006) · Zbl 1120.74605
[59] Shimpi, R. P.; Patel, H. G., Free vibrations of plate using two variable refined plate theory, J. Sound Vib., 296, 4-5, 979-999 (2006)
[60] Shankara, C. A.; Iyengar, N. G.R., A C0 element for the free vibration analysis of laminated composite plates, J. Sound Vib., 191, 5, 721-738 (1996)
[61] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[62] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley Publishing · Zbl 1378.65009
[63] Nguyen-Xuan, H.; Tran, L. V.; Thai, C. H.; Kulasegaram, S.; Bordas, S., Isogeometric analysis of functionally graded plates using a refined plate theory, Composites B, 64, 222-234 (2014)
[64] Vuong, A. V.; Heinrich, C.; Simeon, B., ISOGAT: A 2D tutorial MATLAB code for isogeometric analysis, Comput. Aided Geom. Design, 27, 8, 644-655 (2010) · Zbl 1205.65319
[65] de Falco, C.; Reali, A.; Vzquez, R., GeoPDEs: A research tool for isogeometric analysis of PDEs, Adv. Eng. Softw., 42, 12, 1020-1034 (2011) · Zbl 1246.35010
[66] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[67] Thai, C. H.; Ferreira, A. J.M.; Carrera, E.; Nguyen-Xuan, H., Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory, Compos. Struct., 104, 196-214 (2013)
[68] Beiro da Veiga, L.; Buffa, A.; Lovadina, C.; Martinelli, M.; Sangalli, G., An isogeometric method for the Reissner-Mindlin plate bending problem, Comput. Methods Appl. Mech. Engrg., 209-212, 45-53 (2012) · Zbl 1243.74101
[69] Thai, C. H.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T.-H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach, Internat. J. Numer. Methods Engrg., 91, 6, 571-603 (2012) · Zbl 1253.74007
[70] Valizadeh, N.; Natarajan, S.; Gonzalez-Estrada, O. A.; Rabczuk, T.; Bui, T. Q.; Bordas, S. P.A., NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter, Compos. Struct., 99, 309-326 (2013)
[71] Tran, L. V.; Thai, C. H.; Nguyen-Xuan, H., An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates, Finite Elem. Anal. Des., 73, 65-76 (2013)
[72] Thai, C. H.; Ferreira, A. J.M.; Bordas, S. P.A.; Rabczuk, T.; Nguyen-Xuan, H., Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur. J. Mech. A Solids, 43, 89-108 (2014) · Zbl 1406.74453
[73] Thai, C. H.; Nguyen-Xuan, H.; Bordas, S. P.A.; Nguyen-Thanh, N.; Rabczuk, T., Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory, Mech. Adv. Mater. Struct., 22, 6, 451-469 (2015)
[74] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[75] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3410-3424 (2011) · Zbl 1230.74230
[76] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291 (2015) · Zbl 1423.74811
[77] Vel, S. S.; Batra, R. C., Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA J., 40, 7, 1421-1433 (2002)
[78] Qian, L. F.; Batra, R. C.; Chen, L. M., Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, Composites B, 35, 6-8, 685-697 (2004)
[79] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 5, 571-574 (1973)
[80] Kiani, Y.; Eslami, M. R., Thermal postbuckling of imperfect circular functionally graded material plates: Examination of voigt, Mori-Tanaka, and self-consistent schemes, J. Press. Vessel Technol., 137, 2 (2014), 021201-021201
[81] Carrera, E.; Brischetto, S.; Cinefra, M.; Soave, M., Effects of thickness stretching in functionally graded plates and shells, Composites B, 42, 2, 123-133 (2011)
[82] Mantari, J. L.; Guedes Soares, C., A novel higher-order shear deformation theory with stretching effect for functionally graded plates, Composites B, 45, 1, 268-281 (2013)
[83] Thai, C. H.; Zenkour, A. M.; Abdel Wahab, M.; Nguyen-Xuan, H., A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis, Compos. Struct., 139, 77-95 (2016)
[84] Zenkour, A. M., A simple four-unknown refined theory for bending analysis of functionally graded plates, Appl. Math. Model., 37, 9041-9051 (2013) · Zbl 1426.74208
[85] Zenkour, A. M., Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory, J. Sandwich Struct. Mater., 15, 6, 629-656 (2013)
[86] Neves, A.; Ferreira, A.; Carrera, E.; Roque, C.; Cinefra, M.; Jorge, R.; Soares, C., A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Composites B, 43, 2, 711-725 (2012)
[87] Mantari, J. L.; Guedes Soares, C., Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates, Compos. Struct., 94, 8, 2561-2575 (2012)
[88] Thai, H.-T.; Kim, S.-E., A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates, Compos. Struct., 99, 172-180 (2013)
[89] Nguyen, T. N.; Thai, C. H.; Nguyen-Xuan, H., On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach, Int. J. Mech. Sci., 110, 242-255 (2016)
[90] Nguyen, N.-T.; Hui, D.; Lee, J.; Nguyen-Xuan, H., An efficient computational approach for size-dependent analysis of functionally graded nanoplates, Comput. Methods Appl. Mech. Engrg., 297, 191-218 (2015) · Zbl 1423.74550
[91] Reddy, J. N., Theory and Analysis of Elastic Plates and Shells (2006), CRC Press
[92] Bathe, K.-J.; Iosilevich, A.; Chapelle, D., An evaluation of the MITC shell elements, Comput. Struct., 75, 1, 1-30 (2000)
[93] Tran, L. V.; Nguyen-Thoi, T.; Thai, C. H.; Nguyen-Xuan, H., An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates, Mech. Adv. Mater. Struct., 22, 4, 248-268 (2015)
[94] Auricchio, F.; da Veiga, L. B.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 160-172 (2007) · Zbl 1169.74643
[95] Mantari, J. L.; Soares, C. G., A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates, Acta Mech., 226, 3, 625-642 (2014) · Zbl 1320.74074
[96] Akavci, S.; Tanrikulu, A., Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories, Composites B, 83, 203-215 (2015)
[97] Zenkour, A. M., Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Model., 30, 1, 67-84 (2006) · Zbl 1163.74529
[98] Vel, S. S.; Batra, R., Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 3-5, 703-730 (2004)
[99] Matsunaga, H., Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Compos. Struct., 82, 4, 499-512 (2008)
[100] Belabed, Z.; Houari, M. S.A.; Tounsi, A.; Mahmoud, S.; Bg, O. A., An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates, Composites B, 60, 274-283 (2014)
[101] Alijani, F.; Amabili, M., Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates, Compos. Struct., 113, 89-107 (2014)
[102] Mohammadi, M.; Ghayour, M.; Farajpour, A., Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites B, 45, 1, 32-42 (2013)
[103] Ma, L.; Wang, T., Relationships between axisymmetric bending and buckling solutions of {FGM} circular plates based on third-order plate theory and classical plate theory, Int. J. Solids Struct., 41, 1, 85-101 (2004) · Zbl 1076.74036
[104] Saidi, A.; Rasouli, A.; Sahraee, S., Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory, Compos. Struct., 89, 1, 110-119 (2009)
[105] Tran, L. V.; Ferreira, A.; Nguyen-Xuan, H., Isogeometric analysis of functionally graded plates using higher-order shear deformation theory, Composites B, 51, 368-383 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.