×

Cheating identifiable \((k, n)\) threshold quantum secret sharing scheme. (English) Zbl 1508.81793

Summary: Threshold quantum secret sharing (TQSS) is a quantum cryptography technique that is used to split and reconstruct secret information. It is an important tool for ensuring information security and data confidentiality in the quantum communication environment. TQSS is mainly used to solve the problems of absence and dishonesty among participants. However, most existing TQSS can only detect the fact that one or more of the participants are cheating, and they cannot identify who is the cheater. In this paper, we propose a cheating identifiable \((k, n)\) TQSS scheme on a single \(d\)-level quantum system. The dealer, Alice, performs a unitary transformation on two identical initial quantum states and signs one of the states. Then, she sends them to the first participant. After the quantum message is validated, the first participant performs his particular unitary transformation on two quantum states. Our scheme employs the voting mechanism, which not only has the ability to identify cheaters but also resists several typical attacks as well as denial and forgery attacks.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179. IEEE, New York (1984) · Zbl 1306.81030
[2] Susan, L., William K., W.: Protecting Information: From Classical Error Correction to Quantum Cryptography. Cambridge: Cambridge University Press (2006) · Zbl 1210.81001
[3] Bai, CM; Li, ZH; Liu, CJ; Li, YM, Quantum secret sharing using orthogonal multiqudit entangled states, Quantum Inf. Process., 16, 304 (2017) · Zbl 1382.81070 · doi:10.1007/s11128-017-1739-z
[4] Musanna, F.; Kumar, S., A novel three-party quantum secret sharing scheme based on Bell state sequential measurements with application in quantum image sharing, Quantum Inf. Process., 19, 348 (2020) · Zbl 1509.81402 · doi:10.1007/s11128-020-02854-8
[5] Li, HW; Xu, ZM; Yin, ZQ; Cai, QY, Security of practical quantum key distribution with weak-randomness basis selection, Phys. Rev. A, 102, 022605 (2020) · doi:10.1103/PhysRevA.102.022605
[6] Li, L.; Li, Z., A verifiable multiparty quantum key agreement based on bivariate polynomial, Inf. Sci., 521, 343-349 (2020) · Zbl 1458.81013 · doi:10.1016/j.ins.2020.02.057
[7] Hillery, M.; Bužek, V.; Berthiaume, A., Quantum secret sharing, Phys. Rev. A, 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[8] Wang, MM; Qu, Z.; Gong, L., Improved quantum secret sharing scheme based on GHZ states, IJCSE., 21, 106060 (2020)
[9] Tavakoli, A.; Herbauts, I.; Zukowski, M.; Bourennane, M., Secret sharing with a single d-level quantum system, Phys. Rev. A, 92, 030302 (2015) · doi:10.1103/PhysRevA.92.030302
[10] Karimipour, V.; Asoudeh, M., Quantum secret sharing and random hopping: Using single states instead of entanglement, Phys. Rev. A, 92, 030301 (2015) · doi:10.1103/PhysRevA.92.030301
[11] Yang, YG; Jia, X.; Wang, HY; Zhang, H., Verifiable quantum \((k, n)\)-threshold secret sharing, Quantum Inf. Process., 11, 1619-1625 (2012) · doi:10.1007/s11128-011-0323-1
[12] Yang, Y.; Wen, Q., Threshold quantum secret sharing between multi-party and multi-party, Sci. Chin. Ser. G-Phys. Mech. Astron., 51, 1308-1315 (2008) · Zbl 1171.81357 · doi:10.1007/s11433-008-0114-6
[13] Yuuki, T.; Tatsuaki, O.; Nobuyuki, I., Threshold quantum cryptography, Phys. Rev. A, 71, 012314 (2005) · doi:10.1103/PhysRevA.71.012314
[14] Richard, C.; Daniel, G.; Hoi-Kwong, L., How to share a quantum secret, Phys. Rev. Lett., 83, 648-651 (1999) · doi:10.1103/PhysRevLett.83.648
[15] Lai, H.; Pieprzyk, J.; Luo, MX; Zhan, C.; Pan, L.; Orgun, M., High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels, Quantum Inf. Process., 19, 10.1007 (2020) · Zbl 1508.81305
[16] Yang, YG; Teng, YW; Chai, HP; Wen, QY, Verifiable quantum \((k, n)\)-threshold secret key sharing, Int. J. Theor. Phys., 50, 3, 792-798 (2011) · Zbl 1209.81142 · doi:10.1007/s10773-010-0616-7
[17] Song, XL; Liu, YB, Cryptanalysis and improvement of verifiable quantum \((k, n)\) secret sharing, Quantum Inf. Process., 15, 851-868 (2016) · Zbl 1333.81126 · doi:10.1007/s11128-015-1199-2
[18] Qin, HW; Dai, YW, Verifiable \((t, n)\) threshold quantum secret sharing using d-dimensional Bell state, Inf. Process. Lett., 116, 351-355 (2016) · Zbl 1352.81026 · doi:10.1016/j.ipl.2016.01.005
[19] Lu, C.; Miao, F.; Hou, J.; Meng, K., Verifiable threshold quantum secret sharing with sequential communication, Quantum Inf. Process., 17, 310 (2018) · Zbl 1402.81112 · doi:10.1007/s11128-018-2059-7
[20] Cao, WF; Yang, YG, Verifiable quantum secret sharing protocols based on four-qubit entangled states, Int. J. Theor. Phys., 58, 1202-1214 (2019) · Zbl 1433.81016 · doi:10.1007/s10773-019-04012-y
[21] Lu, C.; Miao, F.; Hou, J.; Huang, W.; Xiong, Y., A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security, Quantum Inf. Process., 19, 24 (2020) · Zbl 1508.81717 · doi:10.1007/s11128-019-2509-x
[22] Kurosawa, K., Obana, S., Ogata, W.: \( t \)-cheater identifiable \((k,n)\) threshold secret sharing Schemes. In: Coppersmith D. (eds) Advances in Cryptology - CRYPT0’ 95. CRYPTO 1995. Lecture Notes in Computer Science, pp. 410-423. Springer, Berlin (1995) · Zbl 0876.94032
[23] Liu, Y.; Yang, C.; Wang, Y.; Zhu, L.; Ji, W., Cheating identifiable secret sharing scheme using symmetric bivariate polynomial, Inf. Sci., 453, 21-29 (2018) · Zbl 1440.94098 · doi:10.1016/j.ins.2018.04.043
[24] Wootters, WK; Fields, BD, Optimal state-determination by mutually unbiased measurements, Annals of Phys., 191, 2, 363-381 (1989) · doi:10.1016/0003-4916(89)90322-9
[25] Ivonovic, ID, Geometrical description of quantal state determination, J. Phys. A: Math. Gen., 14, 3241-3245 (1981) · doi:10.1088/0305-4470/14/12/019
[26] Chen, FL; Liu, WF; Chen, SG, Public-key quantum digital signature scheme with one-time pad private-key, Quantum Inf. Process., 17, 1, 10 (2018) · Zbl 1395.81101 · doi:10.1007/s11128-017-1778-5
[27] Song, X.; Liu, Y.; Xiao, M.; Deng, H., A verifiable \((t, n)\) Threshold quantum state sharing against denial attack, IEEE Access., 7, 98908-98920 (2019) · doi:10.1109/ACCESS.2019.2928855
[28] Zou, X.; Qiu, D., Security analysis and improvements of arbitrated quantum signature schemes, Phys. Rev. A, 82, 042325 (2010) · doi:10.1103/PhysRevA.82.042325
[29] Gisin, N.; Stiller, B.; Kraus, B., Trojan-horse attacks on quantum-key-distribution systems, Phys. Rev. A, 73, 2, 022320 (2006) · doi:10.1103/PhysRevA.73.022320
[30] Jain, N.; Stiller, B.; Khan, I., Risk analysis of Trojan-horse attacks on practical quantum key distribution systems, IEEE J. Sel. Topics Quantum Electron., 21, 3, 6600710 (2015) · doi:10.1109/JSTQE.2014.2365585
[31] Jain, N.; Anisimova, E.; Khan, I., Trojan-horse attacks threaten the security of practical quantum cryptography, New J. of Phys., 16, 12, 123030 (2014) · doi:10.1088/1367-2630/16/12/123030
[32] Yang, YG; Sun, SJ; Zhao, QQ, Trojan-horse attacks on quantum key distribution with classical Bob, Quantum Inf. Process., 14, 2, 681-686 (2015) · Zbl 1311.81103 · doi:10.1007/s11128-014-0872-1
[33] Yang, XQ; Wei, J.; Ma, HQ, Trojan horse attacks on counterfactual quantum key distribution, Phys. Lett. A, 380, 1589-1592 (2016) · doi:10.1016/j.physleta.2015.09.027
[34] Sajeed, S., Minshull, C., Jain, N., et al.: Publisher Correction: Invisible Trojan-horse attack. Scientific Reports, p.8430 (2017)
[35] Vinay, SE; Kok, P., Extended analysis of the Trojan-horse attack in quantum key distribution, Phys. Rev. A, 97, 042335 (2018) · doi:10.1103/PhysRevA.97.042335
[36] Deng, FG; Li, XH; Zhou, HY, Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A, 72, 4, 440-450 (2005)
[37] Li, XH; Deng, FG; Zhou, HY, Improving the security of secure direct communication based on the secret transmitting order of particles, Phys. Rev. A, 74, 054302 (2006) · doi:10.1103/PhysRevA.74.054302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.