×

Cryptanalysis and improvement of verifiable quantum \((k,n)\) secret sharing. (English) Zbl 1333.81126

Summary: After analyzing Yang’s verifiable quantum secret sharing (VQSS) scheme, we show that in their scheme a participant can prepare a false quantum particle sequence corresponding to a forged share, while other any participant cannot trace it. In addition, an attacker or a participant can forge a new quantum sequence by transforming an intercepted quantum sequence; moreover, the forged sequence can pass the verification of other participants. So we propose a new VQSS scheme to improve the existed one. In the improved scheme, we construct an identity-based quantum signature encryption algorithm, which ensures chosen plaintext attack security of the shares and their signatures transmitted in the quantum tunnel. We employ dual quantum signature and one-way function to trace against forgery and repudiation of the deceivers (dealer or participants). Furthermore, we add the reconstruction process of quantum secret and prove the security property against superposition attack in this process.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979) · Zbl 0414.94021 · doi:10.1145/359168.359176
[2] Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[3] Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006) · doi:10.1103/PhysRevA.74.054303
[4] Nie, Y.Y., Sang, M.H., Li, Y.H., Liu, J.C.: Three-party quantum information splitting of an arbitrary two-qubit state by using six-qubit cluster state. Int. J. Theor. Phys. 50(5), 1367-1371 (2011) · Zbl 1213.81026 · doi:10.1007/s10773-010-0645-2
[5] Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619-632 (2011) · Zbl 1235.81040 · doi:10.1007/s11128-010-0217-7
[6] Hsu, L.-Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003) · doi:10.1103/PhysRevA.68.022306
[7] Hao, L., Li, J.-L., Long, G.-L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53(3), 491-495 (2010) · doi:10.1007/s11433-010-0145-7
[8] Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999) · doi:10.1103/PhysRevLett.83.648
[9] Lai, H., Orgun, A.M., Xiao, J.H., Pieprzyk, J.: Dynamic (2, 3) threshold quantum secret sharing of secure direct communication. Commun. Theor. Phys. 63(4), 459-465 (2015) · Zbl 1311.81096 · doi:10.1088/0253-6102/63/4/459
[10] Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 42309 (2008) · Zbl 1255.81125 · doi:10.1103/PhysRevA.78.042309
[11] Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 62315 (2010) · doi:10.1103/PhysRevA.82.062315
[12] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: The 26th IEEE Symposium on Foundations of computer science, pp. 383-395 (1985)
[13] Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum \[(k, n)\](k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792-798 (2011) · Zbl 1209.81142 · doi:10.1007/s10773-010-0616-7
[14] Gottesman, D., Chuang, I.: Quantum Digital Signatures. Technical Report. http://arxiv.org/abs/quant-ph/0105032 (2001) · Zbl 1311.81096
[15] Wikipedia, the free encyclopedia: Quantum Digital Signature. http://en.wikipedia.org/wiki/Quantum_digital_signature#Quantum_Digital_Signature · Zbl 1209.81142
[16] Boneh, D., and Zhandry, M.: Secure signatures and chosen ciphertext security in a post-quantum world. In: The 33rd Annual Cryptology Conference, pp. 361-379 (2013) · Zbl 1317.81074
[17] Lü, X., Feng, D.G.: Quantum digital signature based on quantum one-way functions. In: The 7th IEEE International Conference on Advanced Communication Technology, pp. 514-517 (2005)
[18] Buhrman, H., Cleve, R., Watrous, J., Wolf, R.D.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 175-196 (2001) · doi:10.1103/PhysRevLett.87.167902
[19] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Electron. Colloq. Comput. Complex. 14, 197-206 (2008) · Zbl 1231.68124
[20] Agrawal, S., Dan, B., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Advances in Cryptology - EUROCRYPT 2010, pp. 553-572 (2010) · Zbl 1227.94022
[21] Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Int. J. Quantum Inf. 7417, 758-775 (2015) · Zbl 1296.94147
[22] Li, Q., Long, D.Y., Chan, W.H., Qiu, D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10(1), 97-106 (2011) · Zbl 1209.81084 · doi:10.1007/s11128-010-0180-3
[23] Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 508-508 (2003) · doi:10.1103/PhysRevLett.91.057901
[24] Somma, R.D., Hughes, R.J.: Security of decoy-state protocols for general photon-number-splitting attacks. Phys. Rev. A. 87(6), 1993-2001 (2013) · doi:10.1103/PhysRevA.87.062330
[25] Zou, X., Qiu, D.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071-2085 (2013) · Zbl 1267.81135 · doi:10.1007/s11128-012-0509-1
[26] Lin, S., Yu, C.H., Guo, G.D.: Reexamining the security of fair quantum blind signature schemes. Quantum Inf. Process. 13(11), 2407-2415 (2014) · Zbl 1305.81066 · doi:10.1007/s11128-014-0840-9
[27] Zhang, P., Matsumoto, R.: Quantum strongly secure ramp secret sharing. Quantum Inf. Process. 14(2), 715-729 (2014) · Zbl 1311.81106 · doi:10.1007/s11128-014-0863-2
[28] Zeng, G.H. (2008) Reply to “comment on ‘arbitrated quantum-signature scheme’ ”. Phys. Rev. A. doi:10.1103/PhysRevA.78.016301 · Zbl 0414.94021
[29] Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011) · doi:10.1103/PhysRevA.84.022344
[30] Damgard, I., Funder, J., Nielsen, J.B., et al.: Superposition attacks on cryptographic protocols. In: The 7th International Conference on Information Theoretic Security, pp. 142-161 (2013) · Zbl 1395.94278
[31] Ogawa, T., Sasaki, A., Iwamoto, M., Yamamoto, H.: Quantum secret sharing schemes and reversibility of quantum operations. Phys. Rev. A 72(3), 032318 (2005) · doi:10.1103/PhysRevA.72.032318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.