×

Iterative learning control with discrete-time nonlinear nonminimum phase models via stable inversion. (English) Zbl 1527.93126

Summary: Output reference tracking can be improved by iteratively learning from past data to inform the design of feedforward control inputs for subsequent tracking attempts. This process is called iterative learning control (ILC). This article develops a method to apply ILC to systems with nonlinear discrete-time dynamical models with unstable inverses (i.e., discrete-time nonlinear nonminimum phase models). This class of systems includes piezoactuators, electric power converters, and manipulators with flexible links, which may be found in nanopositioning stages, rolling mills, and robotic arms, respectively. As these devices may be required to execute fine transient reference tracking tasks repetitively in contexts such as manufacturing, they may benefit from ILC. Specifically, this article facilitates ILC of such systems by presenting a new ILC synthesis framework that allows combination of the principles of Newton’s root finding algorithm with stable inversion, a technique for generating stable trajectories from unstable models. The new framework, called invert-linearize ILC (ILILC), is validated in simulation on a cart-and-pendulum system with model error, process noise, and measurement noise. Where preexisting Newton-based ILC diverges, ILILC with stable inversion converges, and does so in less than one third the number of trials necessary for the convergence of a gradient-descent-based ILC technique used as a benchmark.
{© 2021 John Wiley & Sons Ltd.}

MSC:

93B47 Iterative learning control
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory

References:

[1] FreemanCT. Upper limb electrical stimulation using input‐output linearization and iterative learning control. IEEE Trans Control Syst Technol. 2015;23(4):1546‐1554. https://doi.org/10.1109/TCST.2014.2363412 · doi:10.1109/TCST.2014.2363412
[2] YuQ, HouZ, XuJX. D‐Type ILC based dynamic modeling and norm optimal ILC for high‐speed trains. IEEE Trans Control Syst Technol. 2018;26(2):652‐663. https://doi.org/10.1109/TCST.2017.2692730 · doi:10.1109/TCST.2017.2692730
[3] RafajłowiczW, JurewiczP, ReinerJ, RafajłowiczE. Iterative learning of optimal control for nonlinear processes with applications to laser additive manufacturing. IEEE Trans Control Syst Technol. 2019;27(6):2647‐2654. https://doi.org/10.1109/TCST.2018.2865444 · doi:10.1109/TCST.2018.2865444
[4] XingX, LiuJ. Modeling and robust adaptive iterative learning control of a vehicle‐based flexible manipulator with uncertainties. Int J Robust Nonlinear Control. 2019;29:2385‐2405. https://doi.org/10.1002/rnc.4500 · Zbl 1418.93135 · doi:10.1002/rnc.4500
[5] JangTJ, AhnHS, ChoiCH. Iterative learning control for discrete‐time nonlinear systems. Int J Syst Sci. 1994;25(7):1179‐1189. https://doi.org/10.1080/00207729408949269 · Zbl 0800.93760 · doi:10.1080/00207729408949269
[6] SaabSS. Discrete‐time learning control algorithm for a class of nonlinear systems. Paper presented at: Proceedings of 1995 American Control Conference; 1995:2793‐2743; IEEE, Seattle. https://doi.org/10.1109/ACC.1995.532347 · doi:10.1109/ACC.1995.532347
[7] WangD. Convergence and robustness of discrete time nonlinear systems with iterative learning control. Automatica. 1998;34(11):1445‐1448. https://doi.org/10.1016/S0005‐1098(98)00098‐3 · Zbl 0961.93029 · doi:10.1016/S0005‐1098(98)00098‐3
[8] SunM, WangD. Initial shift issues on discrete‐time iterative learning control with system relative degree. IEEE Trans Automat Contr. 2003;48(1):144‐148. https://doi.org/10.1109/TAC.2002.806668 · Zbl 1364.93890 · doi:10.1109/TAC.2002.806668
[9] ZhangY, LiuJ, RuanX. Iterative learning control for uncertain nonlinear networked control systems with random packet dropout. Int J Robust Nonlinear Control. 2019;29:3529‐3546. https://doi.org/10.1002/rnc.4568 · Zbl 1426.93094 · doi:10.1002/rnc.4568
[10] XingJ, ChiR, LinN. Adaptive iterative learning control for 2D nonlinear systems with nonrepetitive uncertainties. Int J Robust Nonlinear Control. 2021;31:1168‐1180. https://doi.org/10.1002/rnc.5347 · Zbl 1525.93196 · doi:10.1002/rnc.5347
[11] ShiehHJ, HsuCH. An adaptive approximator‐based backstepping control approach for piezoactuator‐driven stages. IEEE Trans Ind Electron. 2008;55(4):1729‐1738. https://doi.org/10.1109/TIE.2008.917115 · doi:10.1109/TIE.2008.917115
[12] HacklCM, HopfeN, IlchmannA, MuellerM, TrennS. Funnel control for systems with relative degree two. SIAM J Control Optim. 2013;51(2):1046‐1060. https://doi.org/10.1137/100799903 · Zbl 1267.93074 · doi:10.1137/100799903
[13] GenieleH, PatelRV, KhorasaniK. End‐point control of a flexible‐link manipulator: theory and experiments. IEEE Trans Control Syst Technol. 1997;5(6):556‐570. https://doi.org/10.1109/87.641401 · doi:10.1109/87.641401
[14] MünzU, PapachristodoulouA, AllgöwerF. Robust consensus controller design for nonlinear relative degree two multi‐agent systems with communication constraints. IEEE Trans Automat Contr. 2011;56(1):145‐151. https://doi.org/10.1109/TAC.2010.2084150 · Zbl 1368.93224 · doi:10.1109/TAC.2010.2084150
[15] EscobarG, OrtegaR, Sira‐RamirezH, VilainJP, ZeinI. An experimental comparison of several nonlinear controllers for power converters. IEEE Control Syst Mag. 1999;19(1):66‐82. https://doi.org/10.1109/37.745771 · doi:10.1109/37.745771
[16] De BattistaH, MantzRJ. Dynamical variable structure controller for power regulation of wind energy conversion systems. IEEE Trans Energy Convers. 2004;19(4):756‐763. https://doi.org/10.1109/TEC.2004.827705 · doi:10.1109/TEC.2004.827705
[17] GutierrezHM, RoPI. Magnetic servo levitation by sliding‐mode control of nonaffine systems with algebraic input invertibility. IEEE Trans Ind Electron. 2005;52(5):1449‐1455. https://doi.org/10.1109/TIE.2005.855651 · doi:10.1109/TIE.2005.855651
[18] KhoslaPK, KanadeT. Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulators. Int J Robot Res. 1988;7(1):18‐28. https://doi.org/10.1177/027836498800700102 · doi:10.1177/027836498800700102
[19] SchitterG, StarkRW, StemmerA. Sensors for closed‐loop piezo control: strain gauges versus optical sensors. Meas Sci Technol. 2002;13:N47‐N48. https://doi.org/10.1088/0957‐0233/13/4/404 · doi:10.1088/0957‐0233/13/4/404
[20] AwtarS, CraigKC. Electromagnetic coupling in a dc motor and tachometer assembly. J Dyn Syst Meas Control. 2004;126(3):684‐691. https://doi.org/10.1115/1.1789543 · doi:10.1115/1.1789543
[21] deWitCC, SicilianoB, BastinG. Theory of Robot Control. Springer‐Verlag; 1996. · Zbl 0854.70001
[22] AvrachenkovKE. Iterative learning control based on quasi‐Newton methods. Paper presented at: Proceedings of the 37th IEEE Conference on Decision & Control; December 1998:170‐174; Tampa.
[23] SpiegelIA & BartonK A closed‐form representation of piecewise defined systems and their integration with iterative learning control. Paper presented at: Proceedings of the 2019 American Control Conference (ACC); 2019:2327‐2333; IEEE, Philadelphia, PA. https://doi.org/10.23919/ACC.2019.8814823 · doi:10.23919/ACC.2019.8814823
[24] XuJX, TanY. Linear and Nonlinear Iterative Learning Control. Vol 404. Springer‐Verlag; 2003. · Zbl 1021.93002
[25] TomizukaM. Zero phase error tracking algorithm for digital control. J Dyn Syst Meas Control. 1987;109(1):65‐68. https://doi.org/10.1115/1.3143822 · Zbl 0621.93017 · doi:10.1115/1.3143822
[26] vanZundertJ, BolderJ, KoekebakkerS, OomenT. Resource‐efficient ILC for LTI/LTV systems through LQ tracking and stable inversion: Enabling large feedforward tasks on a position‐dependent printer. Mechatronics. 2016;38:76‐90. https://doi.org/10.1016/j.mechatronics.2016.07.001 · doi:10.1016/j.mechatronics.2016.07.001
[27] DevasiaS, ChenD, PadenB. Nonlinear inversion‐based output tracking. IEEE Trans Automat Contr. 1996;41(7):930‐942. https://doi.org/10.1109/9.508898 · Zbl 0859.93006 · doi:10.1109/9.508898
[28] DevasiaS, PadenB. Stable inversion for nonlinear nonminimum‐phase time‐varying systems. IEEE Trans Automat Contr. 1998;43(2):283‐288. https://doi.org/10.1109/9.661082 · Zbl 0904.93027 · doi:10.1109/9.661082
[29] ZengG, HuntLR. Stable inversion for nonlinear discrete‐time systems. IEEE Trans Automat Contr. 2000;45(6):1216‐1220. https://doi.org/10.1109/9.863610 · Zbl 0972.93036 · doi:10.1109/9.863610
[30] AnderssonJAE, GillisJ, HornG, RawlingsJB, DiehlM. CasADi: a software framework for nonlinear optimization and optimal control. Math Program Comput. 2019;11:1‐36. https://doi.org/10.1007/s12532‐018‐0139‐4 · Zbl 1411.90004 · doi:10.1007/s12532‐018‐0139‐4
[31] EksteenJJA, HeynsPS. Improvements in stable inversion of NARX models by using Mann iteration. Inverse Probl Sci Eng. 2016;24(4):667‐691. https://doi.org/10.1080/17415977.2015.1055262 · Zbl 1339.93112 · doi:10.1080/17415977.2015.1055262
[32] AgarwalRP. Difference Equations and Inequalities: Theory, Methods, and Applications. 2nd ed.Marcel Dekker, Inc; 2000. · Zbl 0952.39001
[33] RumpSM. Inversion of extremely ill‐conditioned matrices in floating‐point. Jpn J Ind Appl Math. 2009;26(2‐3):249‐277. https://doi.org/10.1007/BF03186534 · Zbl 1185.65050 · doi:10.1007/BF03186534
[34] BelsleyDA, KuhE, WelschRE. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc.; 1980. · Zbl 0479.62056
[35] ChuB, OwensD. Singular value distribution of non‐minimum phase systems with application to iterative learning control. Paper presented at: Proceedings of the 52nd IEEE Conference on Decision and Control; 2013:6700‐6705; Florence: IEEE. https://doi.org/10.1109/CDC.2013.6760950 · doi:10.1109/CDC.2013.6760950
[36] MooreKL. Iterative Learning Control for Deterministic Systems. Springer‐Verlag; 1993. · Zbl 0773.93002
[37] NorrlöfM, GunnarssonS. Time and frequency domain convergence properties in iterative learning control. Int J Control. 2002;75(14):1114‐1126. https://doi.org/10.1080/00207170210159122 · Zbl 1030.93016 · doi:10.1080/00207170210159122
[38] DijkstraBG. Iterative Learning Control with Application to a Wafer Stage. PhD thesis. Delft University of Technology; 2004.
[39] LeeJH, LeeKS, KimWC. Model‐based iterative learning control with a quadratic criterion for time‐varying linear systems. Automatica. 2000;36(5):641‐657. https://doi.org/10.1016/S0005‐1098(99)00194‐6 · Zbl 0959.93019 · doi:10.1016/S0005‐1098(99)00194‐6
[40] OwensDH, HatonenJJ, DaleyS. Robust monotone gradient‐based discrete‐time iterative learning control. Int J Robust Nonlinear Control. 2009;19:634‐661. https://doi.org/10.1002/rnc.1338 · Zbl 1169.93362 · doi:10.1002/rnc.1338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.