×

Existence and uniqueness of solution to unsteady Darcy-Brinkman problem with Korteweg stress for modelling miscible porous media flow. (English) Zbl 07905798

Summary: The work investigates a model that combines a convection-diffusion-reaction equation for solute concentration with an unsteady Darcy-Brinkman equation for the flow field, including the Korteweg stress. Additionally, the flow field experiences an external body force term while the permeability fluctuates with solute concentration. Such models are used to describe flows in porous mediums such as fractured karst reservoirs, mineral wool, industrial foam, coastal mud, etc. The system of equations has Neumann boundary conditions for the solute concentration and no-flow conditions for the velocity field, and the well-posedness of the model is discussed for a wide range of initial data. The proofing techniques remain applicable in establishing the well-posedness of non-reactive and homogeneous porous media flows under the specified simplifications.

MSC:

76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics

References:

[1] Allali, K., Existence and uniqueness of solutions to a model describing miscible liquids, C. R. Math., 355, 1148-1153, 2017 · Zbl 1375.76032
[2] Allali, K.; Volpert, V.; Vougalter, V., A model of miscible liquids in porous media, Electron. J. Differ. Equ., 264, 1-10, 2015 · Zbl 1330.35310
[3] Allen, M.; Behie, A.; Trangenstein, J. A., Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics, 1998, Spinger: Spinger New York
[4] Babuška, I.; Gatica, G. N., A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48, 2, 498-523, 2010 · Zbl 1410.76148
[5] Badia, R.; Codina, S., Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal., 47, 3, 1971-2000, 2009 · Zbl 1406.76047
[6] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, 2012, Springer Science & Business Media
[7] Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow Turbul. Combust., 1, 27-34, 1949 · Zbl 0041.54204
[8] Brown, D. L.; Efendiev, Y.; Li, G.; Savatorova, V., Homogenization of high-contrast Brinkman flows, Multiscale Model. Simul., 13, 2, 472-490, 2015 · Zbl 1320.35037
[9] Bulíček, M.; Málek, J.; Žabenský, J., On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient, Nonlinear Anal., Real World Appl., 26, 109-132, 2015 · Zbl 1330.35031
[10] Cai, M.; Mu, M.; Xu, J., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47, 5, 3325-3338, 2009 · Zbl 1213.76131
[11] Cao, Y.; Gunzburger, M.; He, X.; Wang, X., Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition, Numer. Math., 117, 601-629, 2011 · Zbl 1305.76072
[12] Carta, G.; Gregory, M. E.; Kirwan, D. J.; Massaldi, H. A., Chromatography with permeable supports: theory and comparison with experiments, Sep. Technol., 2, 2, 62-72, 1992
[13] Cesmelioglu, A.; Rivière, B. M., Analysis of weak solutions for the fully coupled Stokes-Darcy-transport problem, 2009, Rice University, Technical Report
[14] Chen, N.; Gunzburger, M.; Wang, X., Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, J. Math. Anal. Appl., 368, 2, 658-676, 2010 · Zbl 1352.35093
[15] Daccord, G.; Lenormand, R., Fractal patterns from chemical dissolution, Nature, 325, 41-43, 1987
[16] De Wit, A., Chemo-hydrodynamic patterns and instabilities, Annu. Rev. Fluid Mech., 52, 1, 531-555, 2020 · Zbl 1439.76173
[17] Deki, Y. F.; Nagatsu, Y.; Mishra, M.; Suzuki, R. X., Numerical study of the effect of Péclet number on miscible viscous fingering with effective interfacial tension, J. Fluid Mech., 965, A22, 2023 · Zbl 07710478
[18] Ebenbeck, M.; Garcke, H., On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51, 1868-1912, 2017 · Zbl 1420.35116
[19] Ebenbeck, M.; Garcke, H., On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51, 3, 1868-1912, 2019 · Zbl 1420.35116
[20] Evans, L. C., Partial Differential Equations, 2022, American Math. Soc.
[21] Evje, S., An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment, Chem. Eng. Sci., 165, 240-259, 2017
[22] Evje, S.; Wen, H., A Stokes two-fluid model for cell migration that can account for physical cues in the microenvironment, SIAM J. Math. Anal., 50, 1, 86-118, 2018 · Zbl 1386.76172
[23] Fritz, M.; Lima, E.; Tinsley Oden, J.; Wohlmuth, B., On the unsteady Darcy-Forchheimer-Brinkman equation in local and nonlocal tumor growth models, Math. Models Methods Appl. Sci., 29, 1691-1731, 2019 · Zbl 1425.35076
[24] G., A., Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal., 113, 209-259, 1991 · Zbl 0724.76020
[25] Girault, V.; Rivière, B., DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47, 3, 2052-2089, 2009 · Zbl 1406.76082
[26] Griebel, M.; Klitz, M., Homogenization and numerical simulation of flow in geometries with textile microstructures, Multiscale Model. Simul., 8, 4, 1439-1460, 2010 · Zbl 1383.76445
[27] Hallack, D. M.C.; Cavalcante F., J. S.D. A.; Couto, P., Implementation of a two-phase simulator based on the Brinkman’s equation for vuggy-karstified reservoirs, (Offshore Technology Conference. Offshore Technology Conference, Day 2 Wed, October 30, 2019, Brazil, 2019)
[28] Hou, J.; Qiu, M.; He, X.; Guo, C.; Wei, M.; Bai, B., A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow, SIAM J. Sci. Comput., 38, 5, B710-B739, 2016 · Zbl 1457.65112
[29] Huppert, H. E.; Neufeld, J. A., The fluid mechanics of carbon dioxide sequestration, Annu. Rev. Fluid Mech., 46, 1, 255-272, 2014 · Zbl 1297.76184
[30] Iliev, O.; Lazarov, R.; Willems, J., Variational multiscale finite element method for flows in highly porous media, Multiscale Model. Simul., 9, 4, 1350-1372, 2011 · Zbl 1244.76024
[31] John, V.; Novo, J., Analysis of the pressure stabilized Petrov-Galerkin method for the evolutionary Stokes equations avoiding time step restrictions, SIAM J. Numer. Anal., 53, 2, 1005-1031, 2015 · Zbl 1312.65162
[32] Joseph, D. D., Fluid dynamics of two miscible liquids with diffusion and gradient stresses, Eur. J. Mech. B, Fluids, 9, 6, 565-596, 1990
[33] Keim, C.; Wendland, H., A high-order, analytically divergence-free approximation method for the time-dependent Stokes problem, SIAM J. Numer. Anal., 54, 2, 1288-1312, 2016 · Zbl 1382.65285
[34] Korteweg, D., On the form which the equations of motion of fluids take if we take into account the capillary forces caused by considerable but known variations of density and on the theory of capillarity in the hypothesis of a continuous variation of the density, Dutch Arch. Exact Nat. Sci., 6, 1-24, 1901
[35] Krotkiewski, M.; Ligaarden, I. S.; Lie, K.-A.; Schmid, D. W., On the importance of the Stokes-Brinkman equations for computing effective permeability in karst reservoirs, Commun. Comput. Phys., 10, 5, 1315-1332, 2011 · Zbl 1373.86003
[36] Layton, W.; Tran, H.; Trenchea, C., Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows, SIAM J. Numer. Anal., 51, 1, 248-272, 2013 · Zbl 1370.76173
[37] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218, 2002 · Zbl 1037.76014
[38] Ligaarden, I.; Krotkiewski, M.; Lie, K.; Pal, M.; Schmid, D., On the Stokes-Brinkman equations for modeling flow in carbonate reservoirs, (ECMOR XII-12th European Conference on the Mathematics of Oil Recovery, 2010), pp. cp-163
[39] Link, K. G.; Sorrells, M. G.; Danes, N. A.; Neeves, K. B.; Leiderman, K.; Fogelson, A. L., A mathematical model of platelet aggregation in an extravascular injury under flow, Multiscale Model. Simul., 18, 4, 1489-1524, 2020 · Zbl 1455.92035
[40] Matthias, E.; Harald, G.; Robert, N., Cahn-Hilliard-Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst., Ser. S, 14, 11, 3989-4033, 2021 · Zbl 1480.35411
[41] McCurdy, M.; Moore, N.; Wang, X., Convection in a coupled free flow-porous media system, SIAM J. Appl. Math., 79, 6, 2313-2339, 2019 · Zbl 1425.76249
[42] Morales, F. A.; Showalter, R. E., A Darcy-Brinkman model of fractures in porous media, J. Math. Anal. Appl., 452, 2, 1332-1358, 2017 · Zbl 1404.74150
[43] Mu, L., A uniformly robust H(DIV) weak Galerkin finite element methods for Brinkman problems, SIAM J. Numer. Anal., 58, 3, 1422-1439, 2020 · Zbl 1434.65271
[44] Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A., Hydrodynamic fingering instability induced by a precipitation reaction, Phys. Rev. Lett., 113, Article 024502 pp., 2014
[45] Pojman, J. A.; Chekanov, Y.; Wyatt, V.; Bessonov, N.; Volpert, V., Numerical simulations of convection induced by Korteweg stresses in a miscible polymer-monomer system: effects of variable transport coefficients, polymerization rate and volume changes, Microgravity Sci. Technol., 21, 3, 225-237, 2009
[46] Pojman, J. A.; Whitmore, C.; Turco Liveri, M. L.; Lombardo, R.; Marszalek, J.; Parker, R.; Zoltowski, B., Evidence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning drop tensiometer, Langmuir, 22, 6, 2569-2577, 2006
[47] Popov, P.; Qin, G.; Bi, L.; Efendiev, Y.; Kang, Z.; Li, J., Multiphysics and multiscale methods for modeling fluid flow through naturally fractured carbonate karst reservoirs, SPE Reserv. Eval. Eng., 12, 02, 218-231, 2009
[48] Pramanik, S.; Mishra, M., Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media, Phys. Fluids, 25, 7, Article 074104 pp., 2013 · Zbl 1320.76112
[49] Qiao, Y.; Wen, H.; Evje, S., Viscous two-phase flow in porous media driven by source terms: analysis and numerics, SIAM J. Math. Anal., 51, 6, 5103-5140, 2019 · Zbl 1427.76258
[50] Seya, S.; Suzuki, R. X.; Nagatsu, Y.; Ban, T.; Mishra, M., Numerical study on topological change of viscous fingering induced by a phase separation with Korteweg force, J. Fluid Mech., 938, A18, 2022 · Zbl 1524.76183
[51] Smyth, W. D.; Carpenter, J. R., Instability in Geophysical Flows, 2019, Cambridge University Press · Zbl 1427.76077
[52] Stanislaw, M.; Szafraniec, P., Nonmonotone slip problem for miscible liquids, J. Math. Anal. Appl., 471, 342-357, 2019 · Zbl 1412.76022
[53] Swernath, S.; Malengier, B.; Pushpavanam, S., Effect of Korteweg stress on viscous fingering of solute plugs in a porous medium, Chem. Eng. Sci., 65, 7, 2284-2291, 2010
[54] Szymczak, P.; Ladd, A. J.C., Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630, 2014 · Zbl 1323.76026
[55] Vafai, K. E., Handbook of Porous Media, 110, 2005, CRC Press
[56] Vafai, K. E., Handbook of Porous Media, 2015, CRC Press · Zbl 1315.76005
[57] Wenqiang, F.; Xiaoming, H.; Zhu, W.; Xu, Z., Non-iterative domain decomposition methods for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition, Appl. Math. Comput., 219, 2, 453-463, 2012 · Zbl 1302.76173
[58] White, A. R.; Ward, T., CO2 sequestration in a radial Hele-Shaw cell via an interfacial chemical reaction, Chaos, 22, 3, Article 037114 pp., 2012
[59] Wu, Y.-S., Multiphase Fluid Flow in Porous and Fractured Reservoirs, 2016, Elsevier: Elsevier New York
[60] Yanren, H.; Yi, Q., On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition, Comput. Math. Appl., 77, 1, 50-65, 2019 · Zbl 1442.65373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.