×

Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. (English) Zbl 1428.76017

Summary: We propose a numerical scheme for simulation of transient flows of incompressible non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient (shear rate) and the Cauchy stress tensor (shear stress). The main difficulty in dealing with the governing equations for flows of such fluids is that the non-monotone constitutive relation allows several values of the stress to be associated with the same value of the symmetric part of the velocity gradient. This issue is handled via a reformulation of the governing equations. The equations are reformulated as a system for the triple pressure-velocity-apparent viscosity, where the apparent viscosity is given by a scalar implicit equation. We prove that the proposed numerical scheme has – on the discrete level – a solution, and using the proposed scheme, we numerically solve several flow problems.

MSC:

76A05 Non-Newtonian fluids
76D99 Incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

FEniCS; FreeFem++

References:

[1] Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9-23 (2015). https://doi.org/10.11588/ans.2015.100.20553 · doi:10.11588/ans.2015.100.20553
[2] Arnold, D.N., Logg, A.: Periodic table of the finite elements. SIAM News 47(9) (2014)
[3] Boltenhagen, P., Hu, Y., Matthys, E.F., Pine, D.J.: Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 79, 2359-2362 (1997). https://doi.org/10.1103/PhysRevLett.79.2359 · doi:10.1103/PhysRevLett.79.2359
[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002
[5] Bulíček, M., Gwiazda, P., Málek, J., Rajagopal, K.R., Świerczewska-Gwiazda, A.: On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. In: Robinson, J.C., Rodrigo, J.L., Sadowski, W. (eds.) Mathematical Aspects of Fluid Mechanics, London Mathematical Society Lecture Note Series, vol. 402, pp. 23-51. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139235792.003 · Zbl 1296.35137
[6] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2(2), 109-136 (2009). https://doi.org/10.1515/ACV.2009.006 · Zbl 1233.35164 · doi:10.1515/ACV.2009.006
[7] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44(4), 2756-2801 (2012). https://doi.org/10.1137/110830289 · Zbl 1256.35074 · doi:10.1137/110830289
[8] Bulíček, M.; Málek, J.; Amann, H. (ed.); Giga, Y. (ed.); Kozono, H. (ed.); Okamoto, H. (ed.); Yamazaki, M. (ed.), On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, 135-156 (2016), Basel · Zbl 1338.35352 · doi:10.1007/978-3-0348-0939-9-8
[9] Bustamante, R.: Some topics on a new class of elastic bodies. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2105), 1377-1392 (2009). https://doi.org/10.1098/rspa.2008.0427 · Zbl 1186.74016 · doi:10.1098/rspa.2008.0427
[10] Bustamante, R., Rajagopal, K.R.: Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. NonLinear Mech. 46(2), 376-386 (2011). https://doi.org/10.1016/j.ijnonlinmec.2010.10.002 · doi:10.1016/j.ijnonlinmec.2010.10.002
[11] Bustamante, R., Rajagopal, K.R.: On a new class of electroelastic bodies I. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2149), 20120521 (2013). https://doi.org/10.1098/rspa.2012.0521 · Zbl 1371.74095 · doi:10.1098/rspa.2012.0521
[12] Bustamante, R., Rajagopal, K.R.: Implicit constitutive relations for nonlinear magnetoelastic bodies. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2175), 20140959 (2015). https://doi.org/10.1098/rspa.2014.0959 · Zbl 1371.74040 · doi:10.1098/rspa.2014.0959
[13] Bustamante, R., Rajagopal, K.R.: Implicit equations for thermoelastic bodies. Int. J. NonLinear Mech. 92, 144-152 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.002 · doi:10.1016/j.ijnonlinmec.2017.04.002
[14] David, J., Filip, P.: Phenomenological modelling of non-monotonous shear viscosity functions. Appl. Rheol. 14(2), 82-88 (2004)
[15] Diening, L., Kreuzer, C., Süli, E.: Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51(2), 984-1015 (2013). https://doi.org/10.1137/120873133 · Zbl 1268.76030 · doi:10.1137/120873133
[16] Divoux, T., Fardin, M.A., Manneville, S., Lerouge, S.: Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48(1), 81-103 (2016). https://doi.org/10.1146/annurev-fluid-122414-034416 · Zbl 1356.76014 · doi:10.1146/annurev-fluid-122414-034416
[17] Donnelly, R.J.: Taylor-Couette flow: the early days. Phys. Today 44(11), 32-39 (1991)
[18] Fardin, M.A., Ober, T.J., Gay, C., Gregoire, G., McKinley, G.H., Lerouge, S.: Potential “ways of thinking” about the shear-banding phenomenon. Soft Matter 8, 910-922 (2012). https://doi.org/10.1039/C1SM06165H · doi:10.1039/C1SM06165H
[19] Fardin, M.A., Radulescu, O., Morozov, A., Cardoso, O., Browaeys, J., Lerouge, S.: Stress diffusion in shear banding wormlike micelles. J. Rheol. 59(6), 1335-1362 (2015). https://doi.org/10.1122/1.4930858 · doi:10.1122/1.4930858
[20] Fusi, L., Farina, A.: Flow of a class of fluids defined via implicit constitutive equation down an inclined plane: analysis of the quasi-steady regime. Eur. J. Mech. B Fluids 61, 200-208 (2017). https://doi.org/10.1016/j.euromechflu.2016.11.008 · Zbl 1408.76013 · doi:10.1016/j.euromechflu.2016.11.008
[21] Fusi, L., Farina, A., Saccomandi, G., Rajagopal, K.R.: Lubrication approximation of flows of a special class of non-Newtonian fluids defined by rate type constitutive equations. Appl. Math. Model. 60, 508-525 (2018). https://doi.org/10.1016/j.apm.2018.03.038 · Zbl 1480.76005 · doi:10.1016/j.apm.2018.03.038
[22] Galindo-Rosales, F.J., Rubio-Hernández, F.J., Sevilla, A.: An apparent viscosity function for shear thickening fluids. J. Non Newton. Fluid Mech. 166(5-6), 321-325 (2011). https://doi.org/10.1016/j.jnnfm.2011.01.001 · Zbl 1281.76006 · doi:10.1016/j.jnnfm.2011.01.001
[23] Gokulnath, C., Saravanan, U., Rajagopal, K.R.: Representations for implicit constitutive relations describing non-dissipative response of isotropic materials. Z. Angew. Math. Phys. 68(6), 129 (2017). https://doi.org/10.1007/s00033-017-0872-y · Zbl 1386.74027 · doi:10.1007/s00033-017-0872-y
[24] Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3-4), 251-265 (2012) · Zbl 1266.68090
[25] Hron, J., Málek, J., Stebel, J., Touška, K.: A novel view on computations of steady flows of Bingham fluids using implicit constitutive relations (2018). Available at http://ncmm.karlin.mff.cuni.cz/db/publications/show/1006 (submitted)
[26] Hu, Y.T., Boltenhagen, P., Pine, D.J.: Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions. J. Rheol. 42, 1185-1208 (1998). https://doi.org/10.1122/1.550926 · doi:10.1122/1.550926
[27] Janečka, A., Pavelka, M.: Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics. Continu. Mech. Therm. 30(4), 917-941 (2018). https://doi.org/10.1007/s00161-018-0667-1 · Zbl 1396.76019 · doi:10.1007/s00161-018-0667-1
[28] Janečka, A., Průša, V.: Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-newtonian fluids. AIP Conf. Proc. 1662, 020003 (2015). https://doi.org/10.1063/1.4918873 · doi:10.1063/1.4918873
[29] Le Roux, C., Rajagopal, K.R.: Shear flows of a new class of power-law fluids. Appl. Math. 58(2), 153-177 (2013). https://doi.org/10.1007/s10492-013-0008-4 · Zbl 1274.76039 · doi:10.1007/s10492-013-0008-4
[30] Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23099-8 · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[31] Málek, J., Průša, V., Rajagopal, K.R.: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48(12), 1907-1924 (2010). https://doi.org/10.1016/j.ijengsci.2010.06.013 · Zbl 1231.76073 · doi:10.1016/j.ijengsci.2010.06.013
[32] Málek, J., Průša, V., Skřivan, T., Süli, E.: Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 30(2), 023101 (2018). https://doi.org/10.1063/1.5018172 · doi:10.1063/1.5018172
[33] Málek, J., Tierra, G.: Numerical approximations for unsteady flows of incompressible fluids characterised by non-monotone implicit constitutive relations. In: Díaz Moreno, J.M.D., Díaz Moreno, J.C., García Vázquez, C., Medina Moreno, J., Ortegón Gallego, F., Pérez Martínez, M.C., Redondo Neble, C.V., Rodríguez Galván, J.R. (eds.) Proceedings of the XXIV Congress on Differential Equations and Applications, XIV Congress on Applied Mathematics, pp. 797-802. Cádiz (2015)
[34] Maringová, E., Žabenský, J.: On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions. Nonlinear Anal. Real World Appl. 41(Supplement C), 152-178 (2018). https://doi.org/10.1016/j.nonrwa.2017.10.008 · Zbl 1390.35279 · doi:10.1016/j.nonrwa.2017.10.008
[35] Mohankumar, K.V., Kannan, K., Rajagopal, K.R.: Exact, approximate and numerical solutions for a variant of Stokes’ first problem for a new class of non-linear fluids. Int. J. Non Linear Mech. 77, 41-50 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.07.004 · doi:10.1016/j.ijnonlinmec.2015.07.004
[36] Narayan, S.P.A., Rajagopal, K.R.: Unsteady flows of a class of novel generalizations of the Navier-Stokes fluid. Appl. Math. Comput. 219(19), 9935-9946 (2013). https://doi.org/10.1016/j.amc.2013.03.049 · Zbl 1291.76098 · doi:10.1016/j.amc.2013.03.049
[37] Perlácová, T., Průša, V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non Newton. Fluid Mech. 216, 13-21 (2015). https://doi.org/10.1016/j.jnnfm.2014.12.006 · doi:10.1016/j.jnnfm.2014.12.006
[38] Průša, V., Rajagopal, K.R.: On implicit constitutive relations for materials with fading memory. J. Non Newton. Fluid Mech. 181-182, 22-29 (2012). https://doi.org/10.1016/j.jnnfm.2012.06.004 · doi:10.1016/j.jnnfm.2012.06.004
[39] Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279-319 (2003). https://doi.org/10.1023/A:1026062615145 · Zbl 1099.74009 · doi:10.1023/A:1026062615145
[40] Rajagopal, K.R.: On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243-249 (2006). https://doi.org/10.1017/S0022112005008025 · Zbl 1097.76009 · doi:10.1017/S0022112005008025
[41] Rajagopal, K.R., Saccomandi, G.: A novel approach to the description of constitutive relations. Front. Mater. 3, 36 (2016). https://doi.org/10.3389/fmats.2016.00036 · doi:10.3389/fmats.2016.00036
[42] Srinivasan, S., Karra, S.: Flow of “stress power-law” fluids between parallel rotating discs with distinct axes. Int. J. Non Linear Mech. 74, 73-83 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.04.004 · doi:10.1016/j.ijnonlinmec.2015.04.004
[43] Stebel, J.: Finite element approximation of Stokes-like systems with implicit constitutive relation. In: Handlovičová, A., Minarechova, Z., Ševčovič, D. (eds.) 19th Conference on Scientific Computing, Vysoké Tatry-Podbanské, Slovakia, September 9-14, 2012. Proceedings of the Conference ALGORITMY, pp. 291-300. Publishing House of Slovak University of Technology, Bratislava (2016) · Zbl 1278.76062
[44] Süli, E., Tscherpel, T.: Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids (2018). arXiv:1804.02264 · Zbl 1464.65131
[45] Temam, R.: Navier-Stokes Equations, Studies in Mathematics and its Applications, vol. 2 (3rd edn). North-Holland, Amsterdam (1984). Theory and numerical analysis. With an appendix by F. Thomasset · Zbl 0568.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.