×

Flow of a class of fluids defined via implicit constitutive equation down an inclined plane: analysis of the quasi-steady regime. (English) Zbl 1408.76013

Summary: We consider the motion of a rate-type fluid defined by an implicit constitutive equation down an inclined plane. We assume that the characteristic height of the layer is small in comparison to the characteristic length, so that lubrication approximation can be applied. After re-scaling the governing equations, we focus on the leading order approximation, and we consider the quasi-steady regime which occurs when the velocity of the advancing front and the velocity of the fluid at the inlet are substantially different. We write the differential equation for the evolution of the upper free surface and solve it numerically, plotting the profile of the layer together with the evolution of the advancing front. A comparison with the Newtonian model is also presented, with particular emphasis on the motion of the front.

MSC:

76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
76A20 Thin fluid films
Full Text: DOI

References:

[1] Rajagopal, K. R., On implicit constitutive theories, Appl. Math., 48, 279-319, (2003) · Zbl 1099.74009
[2] Rajagopal, K. R., On implicit constitutive theories for fluids, J. Fluid Mech., 550, 243-249, (2006) · Zbl 1097.76009
[3] Rajagopal, K. R.; Srinivasa, A. R., On the thermodynamics of fluids defined by implicit constitutive relations, Z. Angew. Math. Phys., 59, 715-729, (2008) · Zbl 1149.76007
[4] Málek, J.; Průša, V.; Rajagopal, K. R., Generalizations of the Navier-Stokes fluid from a new perspective, Internat. J. Engrg. Sci., 48, 1907-1924, (2010) · Zbl 1231.76073
[5] Malek, J.; Rajagopal, K. R., Mathematical properties of the equations governing the flow of fluids with pressure and shear rate dependent viscosities, (Friedlander, S.; Serre, D., Handbook of Mathematical Fluid Dynamics, Vol. 4, (2006), Elsevier)
[6] Hron, J.; Málek, J.; Rajagopal, K. R., Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457, 1603-1622, (2001) · Zbl 1052.76017
[7] Fusi, L.; Farina, A.; Rosso, F., Bingham flows with pressure-dependent rheological parameters, Internat. J. Non-Linear Mech., 64, 33-38, (2014)
[8] Fusi, L.; Farina, A.; Rosso, F., Mathematical models for fluids with pressure-dependent viscosity flowing in porous media, Internat. J. Engrg. Sci., 87, 110-118, (2015) · Zbl 1423.76423
[9] Bertrand, E.; Bibette, J.; Schmitt, V., From shear thickening to shear-induced jamming, Phys. Rev. E, 66, 060401 (R), (2002)
[10] Boltenhagen, P.; Hu, Y.; Matthys, E. F.; Pine, D. J., Observation of bulk phase separation and coexistence in a sheared micellar solution, Phys. Rev. Lett., 79, 2359-2362, (1997)
[11] Fusi, L.; Farina, A.; Rosso, F., Flow of a Bingham-like fluid in a finite channel of varying width: a two-scale approach, J. Non-Newton. Fluid Mech., 177-178, 76-88, (2012)
[12] Fusi, L.; Farina, A.; Rosso, F., Retrieving the Bingham model from a bi-viscous model: some explanatory remarks, Appl. Math. Lett., 27, 11-14, (2014) · Zbl 1319.35186
[13] Fusi, L.; Farina, A.; Rosso, F., Planar squeeze flow of a Bingham fluid, J. Non-Newton. Fluid Mech., 225, 1-9, (2015)
[14] Fusi, L.; Farina, A.; Rosso, F.; Roscani, S., Pressure driven lubrication flow of a Bingham fluid in a channel: A novel approach, J. Non-Newton. Fluid Mech., 221, 66-75, (2015)
[15] L. Fusi, A. Farina, G. Saccomandi, K.R. Rajagopal, Lubrication approximation of flows of a special class of non-Newtonian fluids defined by implicit constitutive equations, J. Non-Newton. Fluid Mech. (in preparation).
[16] Hulme, G., The interpretation of lava flow morphology, Geophys. J. R. Astron. Soc., 39, 361-383, (1974)
[17] Ancey, C., Plasticity and geophysical flows: a review, J. Non-Newton. Fluid Mech., 142, 4-35, (2007) · Zbl 1143.76315
[18] Ancey, C., Snow avalanches, (Balmforth, N.; Provenzale, A., Geomorphological Fluid Mechanics: Selected Topics in Geological and Geomorphological Fluid Mechanics, (2001), Springer Berlin), 319-338 · Zbl 1084.86506
[19] Huppert, H. E., The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech., 121, 43-58, (1982)
[20] Liu, K.; Mei, C., Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid, Phys. Fluids A, 2, 30-36, (1990) · Zbl 0703.76008
[21] Balmforth, N.; Craster, R.; Sassi, R., Shallow viscoplastic flow on an inclined plane, J. Fluid Mech., 470, 1-29, (2002) · Zbl 1026.76002
[22] Bouchut, F.; Boyaval, S., A new model for shallow viscoelastic fluids, M3AS, 23, 1479-1526, (2013) · Zbl 1383.76031
[23] Gratton, J.; Minotti, F.; Mahajan, S., Theory of creeping gravity currents of a non-Newtonian liquid, Phys. Rev. E, 60, 6960-6967, (1999)
[24] Perazzo, C.; Gratton, J., Thin film of non-Newtonian fluid on an incline, Phys. Rev. E, 67, (2003)
[25] Rajagopal, K. R.; Saccomandi, G.; Vergori, L., Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane, J. Fluid Mech., 706, 173-189, (2012) · Zbl 1275.76068
[26] Saccomandi, G.; Vergori, L., Piezo-viscous flows over an inclined surface, Quart. Appl. Math., 68, 747-763, (2010) · Zbl 1372.76014
[27] Fusi, L.; Farina, A.; Rosso, F., Ill posedness of Bingham-type models for the downhill flow of a thin film on an inclined plane, Quart. Appl. Math., 73, 615-627, (2015) · Zbl 1331.76012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.