×

Three-dimensional flows of pore pressure-activated Bingham fluids. (English) Zbl 1425.76015

Summary: We are concerned with a system of partial differential equations (PDEs) describing internal flows of homogeneous incompressible fluids of Bingham type in which the value of activation (the so-called yield) stress depends on the internal pore pressure governed by an advection-diffusion equation. After providing the physical background of the considered model, paying attention to the assumptions involved in its derivation, we focus on the PDE analysis of the initial and boundary value problems. We give several equivalent descriptions for the considered class of fluids of Bingham type. In particular, we exploit the possibility to write such a response as an implicit tensorial constitutive equation, involving the pore pressure, the deviatoric part of the Cauchy stress and the velocity gradient. Interestingly, this tensorial response can be characterized by two scalar constraints. We employ a similar approach to treat stick-slip boundary conditions. Within such a setting we prove long-time and large-data existence of weak solutions to the evolutionary problem in three dimensions.

MSC:

76A05 Non-Newtonian fluids
35Q30 Navier-Stokes equations
76S05 Flows in porous media; filtration; seepage
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Atkin, R. J. and Craine, R. E., Continuum theories of mixtures: Basic theories and historical development, Q. J. Mech. Appl. Math.29 (1976) 209-244. · Zbl 0339.76003
[2] Atkinson, J., The Mechanics of Soils and Foundations, Second Edn. (CRC Press, London, 2007).
[3] Aubin, J. P. and Frankowska, H., Set-Valued Analysis, (Birkha̋user Boston, Inc., Boston, 2009) Reprint of the 1990 edn. [MR1048347]. · Zbl 1168.49014
[4] Bingham, E. C., Plastic flow, J. Frankl. Inst.181 (1916) 845-848.
[5] Bowen, R. M., Part I: Theory of mixtures, in Continuum Physics, Volume III: Mixtures and EM Field Theories, ed. Eringen, A. C. (Academic Press, New York, 1976), pp. 1-127.
[6] Breit, D., Diening, L. and Schwarzacher, S., Solenoidal Lipschitz truncation for parabolic PDES, Math. Models Methods Appl. Sci.23 (2013) 2671-2700. · Zbl 1309.76024
[7] Bulíček, M., Gwiazda, P., Málek, J. and Świerczewska-Gwiazda, A., On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal.44 (2012) 2756-2801. · Zbl 1256.35074
[8] Bulíček, M. and Málek, J., On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, in Recent Developments of Mathematical Fluid Mechanics, eds. Amann, H., Giga, Y., Okamoto, H., Kozono, H. and Yamazaki, M., (Birkhäuser, Basel, 2016), pp. 135-156. · Zbl 1338.35352
[9] Bulíček, M. and Málek, J., Internal flows of incompressible fluids subject to stick-slip boundary conditions, Vietnam J. Math.45 (2017) 207-220. · Zbl 1365.35117
[10] Bulíček, M., Málek, J. and Feireisl, E., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal., Real World Appl.10 (2009) 992-1015. · Zbl 1167.76316
[11] Bulíček, M., Málek, J. and Rajagopal, K. R., Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J.56 (2007) 51-86. · Zbl 1129.35055
[12] Bulíček, M., Málek, J. and Rajagopal, K. R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal.41 (2009) 665-707. · Zbl 1195.35239
[13] Chupin, L. and Mathé, J., Existence theorem for homogeneous incompressible Navier-Stokes equation with variable rheology, Eur. J. Mech. B, Fluids61 (2017) 135-143. · Zbl 1408.76024
[14] Dal Maso, G. and Murat, F., Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal.31 (1998) 405-412. · Zbl 0890.35039
[15] Domenico, P. A. and Schwartz, F. W., Physical and Chemical Hydrogeology, 2nd edn. (John Wiley & Sons Inc., New York, 1998).
[16] Drew, D. A. and Passman, S. L., Theory of Multicomponent Fluids, Applied Mathematical Sciences, Vol. 135 (Springer-Verlag, New York, 1998). · Zbl 0919.76003
[17] Duvant, G. and Lions, J.-L., Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, Vol. 219 (Springer-Verlag, Berlin, 1976). · Zbl 0331.35002
[18] Frehse, J., Málek, J. and Steinhauer, M., An existence result for fluids with shear dependent viscosity — Steady flows, Nonlinear Anal., Theory Methods Appl.30 (1997) 3041-3049. · Zbl 0902.35089
[19] Frehse, J., Málek, J. and Steinhauer, M., On existence results for fluids with shear dependent viscosity — Unsteady flows, in Partial Differential Equations: Theory and Numerical Solution, , Vol. 406 (Chapman & Hall/CRC Press, Boca Raton, 2000), pp. 121-129. · Zbl 0935.35026
[20] Fuchs, M. and Seregin, G., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, , Vol. 1749 (Springer-Verlag, Berlin, 2000). · Zbl 0964.76003
[21] Hutter, K. and Rajagopal, K. R., On flows of granular materials, Contin. Mech. Thermodyn.6 (1994) 81-139. · Zbl 0804.73003
[22] Johnson, G., Massoudi, M. and Rajagopal, K. R., Flow of a fluid solid mixture between flat plates, Chem. Eng. Sci.46 (1991) 1713-1723.
[23] Johnson, G., Massoudi, M. and Rajagopal, K. R., Flow of a fluid infused with solid particles through a pipe, Int. J. Eng. Sci.29 (1991) 649-661. · Zbl 0753.76178
[24] Kirkendall, B. and Roberts, J., Probing the subsurface with electromagnetic fields (2001), Science&Technology Review, November, https://str.llnl.gov/str/November01/Kirkendall.html.
[25] Koch, H. and Solonnikov, V. A., \(l_q\)-estimates for a solution to the nonstationary Stokes equation, J. Math. Sci. (N.Y.)106 (2001) 3042-3072.
[26] Lade, P. V., Static instability and liquefaction of loose fine sandy slopes, J. Geotech. Eng.118 (1992) 51-71.
[27] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969). · Zbl 0184.52603
[28] Ladyzhenskaya, O. A. and Seregin, G. A., Coercive estimates for solutions of linearizations of modified Navier-Stokes equations, Dokl. Akad. Nauk.370 (2000) 738-740. · Zbl 1047.35111
[29] Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, (Éditions Dunod, Paris, 1969). · Zbl 0189.40603
[30] Málek, J. and Rajagopal, K. R., Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Handbook of Differential Equations: Evolutionary Equations, Vol. II (Elsevier/North-Holland, Amsterdam, 2005), pp. 371-459. · Zbl 1095.35027
[31] Málek, J. and Rajagopal, K. R., A thermodynamic framework for a mixture of two liquids, Nonlinear Anal., Real World Appl.9 (2008) 1649-1660. · Zbl 1154.76311
[32] Málek, J., Růžička, M. and Shelukhin, V. V., Herschel-Bulkley fluids: Existence and regularity of steady flows, Math. Models Methods Appl. Sci.15 (2005) 1845-1861. · Zbl 1098.76008
[33] Maringová, E. and Žabenský, J., On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions, Nonlinear Anal., Real World Appl.41 (2018) 152-178. · Zbl 1390.35279
[34] Nakshatrala, K. B. and Rajagopal, K. R., A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium, Int. J. Numer. Methods Fluids67 (2011) 342-368. · Zbl 1308.76273
[35] Rajagopal, K. R. and Srinivasa, A. R., On the thermodynamics of fluids defined by implicit constitutive relations, Z. Angew. Math. Phys.59 (2008) 715-729. · Zbl 1149.76007
[36] Rajagopal, K. R. and Tao, L., Mechanics of Mixtures, , Vol. 35 (World Scientific, Singapore, 1995). · Zbl 0941.74500
[37] Rodrigues, J. F., On the mathematical analysis of thick fluids, J. Math. Sci. (N.Y.)210 (2015) 835-848. · Zbl 1334.76004
[38] Růžička, M., A note on steady flow of fluids with shear dependent viscosity, Nonlinear Anal., Theory Methods Appl.30 (1997) 3029-3039. · Zbl 0906.35076
[39] Samohýl, I., Thermodynamics of Irreversible Processes in Fluid Mixtures: Approached by Rational Thermodynamics, , Vol. III (B. G. Teubner, Leipzig, 1987). · Zbl 0665.76002
[40] Shelukhin, V. V., Bingham viscoplastic as a limit of non-Newtonian fluids, J. Math. Fluid Mech.4 (2002) 109-127. · Zbl 1002.35097
[41] Solonnikov, V. A., Estimates for solutions of nonstationary system of Navier-Stokes equations, J. Sov. Math.8 (1977) 467-523. · Zbl 0404.35081
[42] Solonnikov, V. A., \(L_p\)-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain, J. Math. Sci. (N.Y.)105 (2001) 2448-2484.
[43] Srinivasan, S., Bonito, A. and Rajagopal, K. R., Flow of a fluid through a porous solid due to high pressure gradients, J. Porous Media16 (2013) 193-203.
[44] Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage (Franz Deuticke, Liepzig, 1925). · JFM 51.0655.07
[45] Truesdell, C. A., Sulle basi della termomeccanica: I, II, Atti Accad. Naz. Lincei., Rend. Cl. Sci. Fis. Mat. Nat.22 (1957) 33-38, 158-166. · Zbl 0098.21002
[46] Truesdell, C. A., Mechanical basis of diffusion, J. Chem. Phys.37 (1962) 2336-2344.
[47] Truesdell, C. A., Rational Thermodynamics (Springer-Verlag, New York, 1994). · Zbl 0598.73002
[48] Wolf, J., Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech.9 (2007) 104-138. · Zbl 1151.76426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.