×

A nonlinear POD-Galerkin reduced-order model for compressible flows taking into account rigid body motions. (English) Zbl 1239.76046

Summary: The construction of a nonlinear reduced-order model for fluid-structure interaction problems is investigated in this paper for unsteady compressible flows excited by the rigid body motion of a structure. The reduction is achieved by means of a Galerkin projection of the Navier-Stokes equations on the first POD modes resulting from the proper orthogonal decomposition. In the first part of the paper, the projection technique is carried out on a purely aerodynamic case in order (i) to validate an efficient iterative technique based on an updated QR decomposition to compute the POD modes, and (ii) to discuss the merits of different correction methods introduced to improve the long-term stability of the reduced-order model. The second and most original part of the paper deals with the construction of the reduced set of equations which arise from the projection of the compressible Navier-Stokes equations formulated in a suitable moving frame representing the rigid body motion. The expressions of the resulting non-autonomous terms appearing in the reduced-order model have also been optimized to reduce the computational costs.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76N99 Compressible fluids and gas dynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

elsA; ODEPACK

References:

[1] Akhtar, I.; Borggaard, J.; Hay, A., Shape sensitivity analysis in flow models using a finite-difference approach, Math. Probl. Engrg., 209780, 1-22 (2010) · Zbl 1191.76072
[2] Akhtar, I.; Nayfeh, A.; Ribbens, C., On the stability and extension of reduced-order models in incompressible flows: A numerical study of vortex shedding, Theor. Comput. Fuid Dyn., 23, 3, 213-237 (2009) · Zbl 1234.76040
[3] Akhtar, I.; Nayfeh, A. H., Model based control of laminar wake using fluidic actuation, J. Comput. Nonlinear Dyn., 5, 4, 041015 (2010)
[4] Anttonen, J.; King, P.; Beran, P., Application of multi-POD to a pitching and plunging airfoil, Math. Comput. Model., 42, 3-4, 245-259 (2005) · Zbl 1121.76367
[5] Aubry, N.; Holmes, P.; Lumley, J.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[6] Batchelor, G., An Introduction to Fluid Dynamics (2000), Cambridge University Press · Zbl 0152.44402
[7] C. Beattie, J. Borggaard, S. Gugercin, T. Iliescu, A domain decomposition approach to POD, in: Proceedings of 45th IEEE Conference on Decision and Control. No. FrIP14.12., 2006, pp. 6750-6756.; C. Beattie, J. Borggaard, S. Gugercin, T. Iliescu, A domain decomposition approach to POD, in: Proceedings of 45th IEEE Conference on Decision and Control. No. FrIP14.12., 2006, pp. 6750-6756.
[8] Beran, P.; Lucia, D.; Pettit, C., Reduced-order modelling of limit-cycle oscillation for aeroelastic systems, J. Fluid. Struct., 19, 5, 575-590 (2004)
[9] Bergmann, M.; Bruneau, C.-H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 2, 516-538 (2009) · Zbl 1409.76099
[10] Bergmann, M.; Cordier, L.; Brancher, J. P., Optimal rotary control of the cylinder wake using POD reduced-order model, Phys. Fluid., 17, 9, 097101-097120 (2005) · Zbl 1187.76044
[11] Berkooz, G.; Holmes, P.; Lumley, J., The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech., 25, 539-575 (1993)
[12] R. Bourguet, M. Braza, A. Dervieux, A. Sévrain, Transition features in transonic flow around a NACA0012 airfoil by Navier-Stokes and low-order modelling, in: West-East High Speed Flow Field Conference, ECCOMAS. Moscow, 2007.; R. Bourguet, M. Braza, A. Dervieux, A. Sévrain, Transition features in transonic flow around a NACA0012 airfoil by Navier-Stokes and low-order modelling, in: West-East High Speed Flow Field Conference, ECCOMAS. Moscow, 2007.
[13] Buffoni, M.; Camarri, S.; Iollo, A.; Salvetti, M., Low-dimensional modelling of a confined three-dimensional wake flow, J. Fluid Mech., 569, 141-150 (2006) · Zbl 1104.76071
[14] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Method Engrg., 86, 2, 155-181 (2011) · Zbl 1235.74351
[15] Cazemier, W.; Verstappen, R.; Veldman, A., Proper orthogonal decomposition and low dimensional models for driven cavity flows, Phys. Fluid., 10, 7, 1685-1699 (1998)
[16] Chahlaoui, Y.; Gallivan, K.; Van Dooren, P., Recursive calculation of dominant singular subspaces, SIAM J. Matrix Anal. Appl., 25, 2, 445-463 (2003) · Zbl 1051.65047
[17] Cordier, L.; Abou El Madj, B.; Favier, J., Calibration of POD reduced-order models using Tikhonov regularization, Int. J. Numer. Method. Fluid., 63, 2, 269-296 (2009) · Zbl 1425.76181
[18] Couplet, M.; Basdevant, C.; Sagaut, P., Calibrated reduced-order POD-Galerkin system for fluid flow modelling, J. Comput. Phys., 207, 1, 192-220 (2005) · Zbl 1177.76283
[19] Couplet, M.; Sagaut, P.; Basdevant, C., Intermodal energy transfers in a proper orthogonal decomposition-Galerkin representation of a turbulent separated flows, J. Fluid Mech., 491, 275-284 (2003) · Zbl 1063.76570
[20] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodrı‘guez-Ferran, A., Encyclopedia of computational mechanics, (Fundamentals, vol. 1 (2005), John Wiley & Sons), Ch. 14: Arbitrary Lagrangian-Eulerian Methods
[21] Dowell, E.; Crawley, E.; Curtiss, H.; Peters, D.; Scanlan, R.; Sisto, F., A Modern Course in Aeroelasticity (1995), Kluwer Academic · Zbl 0846.73001
[22] E. Dowell, K. Hall, J. Thomas, R. Florea, B. Epureanu, J. Hegg, Reduced order models in unsteady aerodynamics, in: Struct., Struct. Dyn. Mater. Conf., 1999.; E. Dowell, K. Hall, J. Thomas, R. Florea, B. Epureanu, J. Hegg, Reduced order models in unsteady aerodynamics, in: Struct., Struct. Dyn. Mater. Conf., 1999.
[23] Epureanu, B.; Dowell, E.; Hall, K., Reduced-order models of unsteady transonic viscous flows in turbomachinery, J. Fluid. Struct., 14, 8, 1215-1234 (2000)
[24] Fahl, M., Computation of POD basis functions for fluid flows with Lanczos method, Math. Comput. Model., 34, 1-2, 91-107 (2001) · Zbl 0999.76102
[25] Fletcher, R., Practical Methods of Optimization (2003), Wiley · Zbl 0905.65002
[26] Galletti, B.; Bottaro, A.; Bruneau, C.; Iollo, A., Accurate model reduction of transient and forced wakes, Eur. J. Mech. - B/Fluids, 26, 3, 354-366 (2007) · Zbl 1150.76019
[27] Galletti, B.; Bruneau, C.; Zannetti, L.; Iollo, A., Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech., 503, 161-170 (2004) · Zbl 1116.76344
[28] M. Gazaix, A. Jolles, M. Lazareff, The elsA object-oriented computational tool for industrial applications, in: 23rd Congr. Int. Counc. Aeronaut. Sci. Toronto, 2002.; M. Gazaix, A. Jolles, M. Lazareff, The elsA object-oriented computational tool for industrial applications, in: 23rd Congr. Int. Counc. Aeronaut. Sci. Toronto, 2002.
[29] Gloerfelt, X., Compressible POD-Galerkin reduced-order model of self-sustained oscillations in a cavity, AIAA J., 1, 417-444 (2006)
[30] Golub, G.; Van Loan, C., Matrix Computations (1996), Johns Hopkins University Press · Zbl 0865.65009
[31] K. Hall, J. Thomas, E. Dowell, Reduced-order modelling of unsteady small-disturbance flows using a frequency-domain proper orthogonal decomposition technique, in: 37th Aerosp. Sci. Meet. Exhib. Reno, 1999.; K. Hall, J. Thomas, E. Dowell, Reduced-order modelling of unsteady small-disturbance flows using a frequency-domain proper orthogonal decomposition technique, in: 37th Aerosp. Sci. Meet. Exhib. Reno, 1999.
[32] Hansen, P., Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank, SIAM J. Sci. Statist. Comput., 11, 3, 503-518 (1990) · Zbl 0699.65029
[33] Hay, A.; Akhtar, I.; Borggaard, J., On the use of sensitivity analysis in model reduction to predict flows for varying inflow conditions, Int. J. Numer. Method. Fluid. (2011)
[34] Hay, A.; Borggaard, J.; Akhtar, I.; Pelletier, D., Reduced-order models for parameter dependent geometries based on shape sensitivity analysis, J. Comput. Phys., 229, 4, 1327-1352 (2010) · Zbl 1329.76058
[35] Henri, T.; Yvon, J.-P., System modeling and optimization, (IFIP International Federation for Information Processing, vol. 166 (2005), Springer: Springer Boston), 295-306, Ch. Convergence Estimates of POD-Galerkin Methods for Parabolic Problems · Zbl 1088.65576
[36] Hindmarsh, A., ODEPACK, a systematized collection of ODE solvers, IMACS Trans. Sci. Comput., 1, 55-64 (1983)
[37] Holmes, P.; Lumley, J.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[38] A. Iollo, Remarks on the approximation of the Euler equations by a low order model. Research Report No. 3329, INRIA, 1997.; A. Iollo, Remarks on the approximation of the Euler equations by a low order model. Research Report No. 3329, INRIA, 1997.
[39] Iollo, A.; Lanteri, S.; Désidéri, J.-A., Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations, Theor. Comput. Fluid Dyn., 13, 6, 377-396 (2000) · Zbl 0987.76077
[40] Kalb, V.; Deane, A., An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models, Phys. Fluid., 19, 5, 054106 (2007) · Zbl 1146.76431
[41] Kirby, M., Minimal dynamical systems from PDEs using Sobolev eigenfunctions, Phys. D, 57, 3-4, 466-475 (1992) · Zbl 0760.35041
[42] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148 (2001) · Zbl 1005.65112
[43] Liberge, E.; Hamdouni, A., Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder, J. Fluid. Struct., 26, 2, 292-311 (2010)
[44] Lieu, T.; Farhat, C., Adaptation of aeroelastic reduced-order models and application to an F-16 configuration, AIAA J., 45, 6, 1244-1257 (2007)
[45] Lucia, D.; Beran, P.; Silva, W., Reduced-order modeling: New approaches for computational physics, Prog. Aerosp. Sci., 40, 51-117 (2004)
[46] Lucia, D.; King, P.; Beran, P., Reduced order modeling of a two-dimensional flow with moving shocks, Comput. Fluid., 32, 7, 917-938 (2003) · Zbl 1040.76042
[47] J. Lumley, The structures of inhomogeneous turbulent flow, Nauka, Moscow Edition. in: A.M. Yaglom, V.I. Tatarski (Eds.), Atmospheric Turbulence and Radio Wave Propagation, 1967, pp. 166-178.; J. Lumley, The structures of inhomogeneous turbulent flow, Nauka, Moscow Edition. in: A.M. Yaglom, V.I. Tatarski (Eds.), Atmospheric Turbulence and Radio Wave Propagation, 1967, pp. 166-178.
[48] Mastronardi, N.; Van Barel, M.; Vandebril, R., A fast algorithm for the recursive calculation of dominant singular subspaces, J. Comput. Appl. Math., 218, 2, 238-246 (2008) · Zbl 1154.65319
[49] G.-D. Mortchéléwicz, Application of proper orthogonal decomposition to linearized Euler or Reynolds-Averaged Navier-Stokes equations, in: 47th Israel Annu. Conf. Aerosp. Sci. Tel-Aviv, 2007.; G.-D. Mortchéléwicz, Application of proper orthogonal decomposition to linearized Euler or Reynolds-Averaged Navier-Stokes equations, in: 47th Israel Annu. Conf. Aerosp. Sci. Tel-Aviv, 2007.
[50] Noack, B.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335-363 (2003) · Zbl 1067.76033
[51] Perret, L.; Collin, E.; Delville, J., Polynomial identification of POD based low-order dynamical system, J. Turbul., 7, 17, 1-15 (2006) · Zbl 1273.76134
[52] Pettit, C.; Beran, P., Application of proper orthogonal decomposition to the discrete Euler equations, Int. J. Numer. Method. Engrg., 55, 4, 479-497 (2002) · Zbl 1021.76037
[53] A. Placzek, Construction de modèles d’ordre réduit non-linéaires basés sur la décomposition orthogonale propre pour l’aéroélasticité. Ph.D. thesis, Conservatoire National des Arts et Métiers, 2009. URL <http://tel.archives-ouvertes.fr/tel-00461691/fr/>; A. Placzek, Construction de modèles d’ordre réduit non-linéaires basés sur la décomposition orthogonale propre pour l’aéroélasticité. Ph.D. thesis, Conservatoire National des Arts et Métiers, 2009. URL <http://tel.archives-ouvertes.fr/tel-00461691/fr/>
[54] Placzek, A.; Tran, D.-M.; Ohayon, R., Hybrid proper orthogonal decomposition formulation for linear structural dynamics, J. Sound Vib., 318, 4-5, 943-964 (2008)
[55] T. Pulliam, Low Reynolds number numerical solutions of chaotic flows, in: 27th Aerosp. Sci. Meet. No. 89-0123. Reno, 1989.; T. Pulliam, Low Reynolds number numerical solutions of chaotic flows, in: 27th Aerosp. Sci. Meet. No. 89-0123. Reno, 1989.
[56] Rempfer, D., On low-dimensional Galerkin models for fluid flow, Theor. Comput. Fluid Dyn., 14, 2, 75-88 (2000) · Zbl 0984.76068
[57] Rowley, C.; Colonius, T.; Murray, R., Model reduction for compressible flows using POD and Galerkin projection, Phys. D, 189, 1-2, 115-129 (2004) · Zbl 1098.76602
[58] Siegel, S.; Cohen, K.; McLaughlin, T., Numerical simulations of a feedback controlled circular cylinder wake, AIAA J., 44, 6, 1266-1276 (2006)
[59] Singh, S.; Myatt, J.; Addington, G.; Banda, S.; Hall, J. K., Optimal feedback control of vortex shedding using proper orthogonal decomposition models, J. Fluid. Engrg., 123, 612-618 (2001)
[60] Sirisup, S.; Karniadakis, G., A spectral viscosity method for correcting the long-term behavior of POD modes, J. Comput. Phys., 194, 1, 92-116 (2004) · Zbl 1136.76412
[61] Sirovich, L., Turbulence and the dynamics of coherent structures, Parts I-III, Q. Appl. Math. XLV, 3, 561-590 (1987) · Zbl 0676.76047
[62] Tang, S.; Aubry, N., Suppression of vortex shedding inspired by a low-dimensional model, J. Fluid. Struct., 14, 4, 443-468 (2000)
[63] Thomas, J.; Dowell, E.; Hall, K., Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver, AIAA J., 48, 1, 19-24 (2010)
[64] G. Vigo, Méthodes de décomposition orthogonale aux valeurs propres appliquées aux écoulements instationaires compressibles complexes. Ph.D. thesis, Paris IX Dauphine University, 2000.; G. Vigo, Méthodes de décomposition orthogonale aux valeurs propres appliquées aux écoulements instationaires compressibles complexes. Ph.D. thesis, Paris IX Dauphine University, 2000.
[65] S. Volkwein, Proper orthogonal decomposition and singular value decomposition. SFB-Preprint No. 153, Graz University, 1999.; S. Volkwein, Proper orthogonal decomposition and singular value decomposition. SFB-Preprint No. 153, Graz University, 1999.
[66] Weller, J.; Lombardi, E.; Iollo, A., Robust model identification of actuated vortex wakes, Phys. D, 238, 4, 416-427 (2009) · Zbl 1157.93012
[67] K. Willcox, Reduced-order Aerodynamic Models for Aeroelastic Control of Turbomachines. Ph.D. thesis, Massachusetts Institute of Technology, 2000.; K. Willcox, Reduced-order Aerodynamic Models for Aeroelastic Control of Turbomachines. Ph.D. thesis, Massachusetts Institute of Technology, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.