×

Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases. (English) Zbl 07527732

Summary: Nonlinear model order reduction has opened the door to parameter optimization and uncertainty quantification in complex physics problems governed by nonlinear equations. In particular, the computational cost of solving these equations can be reduced by means of local reduced-order bases. This article examines the benefits of a physics-informed cluster analysis for the construction of cluster-specific reduced-order bases. We illustrate that the choice of the dissimilarity measure for clustering is fundamental and highly affects the performances of the local reduced-order bases. It is shown that clustering with an angle-based dissimilarity on simulation data efficiently decreases the intra-cluster Kolmogorov \(N\)-width. Additionally, an a priori efficiency criterion is introduced to assess the relevance of a ROM-net, a methodology for the reduction of nonlinear physics problems introduced in our previous work in [T. Daniel et al., “Model order reduction assisted by deep neural networks (ROM-net)”, Adv. Model. and Simul. Eng. Sci. 7, Article No. 16, 27 p. (2020; doi:10.1186/s40323-020-00153-6)]. This criterion also provides engineers with a very practical method for ROM-nets’ hyperparameters calibration under constrained computational costs for the training phase. On five different physics problems, our physics-informed clustering strategy significantly outperforms classic strategies for the construction of local reduced-order bases in terms of projection errors.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
76Mxx Basic methods in fluid mechanics

References:

[1] Quarteroni, A.; Rozza, G., Reduced Order Methods for Modeling and Computational Reduction (2013), Springer Publishing Company, Incorporated
[2] Keiper, W.; Milde, A.; Volkwein, S., Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (2018), Springer International Publishing · Zbl 1402.65010
[3] Chinesta, F.; Ladeveze, P.; Cueto, E., A short review on model order reduction based on Proper Generalized Decomposition, Arch. Comput. Methods Eng., 18, 395-404 (2011)
[4] Chinesta, F.; Cueto, E., PGD-Based Modeling of Materials, Structures and Processes (2014)
[5] Prud’homme, C.; Rovas, D.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., 124, 70 (2002)
[6] Rozza, G.; Huynh, D.; Patera, A., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 1-47 (2007)
[7] Cordier, L.; Bergmann, M., Proper Orthogonal Decomposition: an overview, (Lecture Series 2002-04, 2003-03 and 2008-01 on Post-Processing of Experimental and Numerical Data, Von Karman Institute for Fluid Dynamics, 2008 (2008), VKI), 46 pages
[8] Rowley, C.; Colonius, T.; Murray, R., Model reduction for compressible flow using POD and Galerkin projection, Phys. D, Nonlinear Phenom., 189, 115-129 (2003) · Zbl 1098.76602
[9] Cohen, A.; DeVore, R., Kolmogorov widths under holomorphic mappings, IMA J. Numer. Anal., 36, 1-12 (2015) · Zbl 1336.41010
[10] Greif, C.; Urban, K., Decay of the Kolmogorov n-width for wave problems, Appl. Math. Lett., 96, 216-222 (2019) · Zbl 1423.35242
[11] Cagniart, N.; Maday, Y.; Stamm, B., Model Order Reduction for Problems with Large Convection Effects, 131-150 (2019) · Zbl 1416.35021
[12] Nonino, M.; Ballarin, F.; Rozza, G.; Maday, Y., Overcoming Slowly Decaying Kolmogorov n-Width by Transport Maps: Application to Model Order Reduction of Fluid Dynamics and Fluid-Structure Interaction Problems (2019)
[13] Dahmen, W.; Huang, C.; Schwab, C.; Welper, G., Adaptive Petrov-Galerkin methods for first order transport equations, SIAM J. Numer. Anal., 50, 2420-2445 (2012) · Zbl 1260.65091
[14] Dahmen, W.; Plesken, C.; Welper, G., Double greedy algorithms: reduced basis methods for transport dominated problems, ESAIM: Math. Model. Numer. Anal., 48, 623-663 (2014) · Zbl 1291.65339
[15] Rim, D.; Peherstorfer, B.; Mandli, K., Manifold approximations via transported subspaces: model reduction for transport-dominated problems (2020)
[16] Taddei, T.; Zhang, L., Space-time registration-based model reduction of parameterized one-dimensional hyperbolic pdes (2020)
[17] Amsallem, D.; Zahr, M.; Farhat, C., Nonlinear model order reduction based on local reduced-order bases, Int. J. Numer. Methods Eng., 1-31 (2012)
[18] Washabaugh, K.; Amsallem, D.; Zahr, M.; Farhat, C., Nonlinear model reduction for CFD problems using local reduced order bases, (42nd AIAA Fluid Dynamics Conference (2012))
[19] Lumley, J., The structure of inhomogeneous turbulent flows, (Atm. Turb. and Radio Wave Prop. (1967)), 166-178
[20] Amsallem, D.; Farhat, C., An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput., 33, 5, 2169-2198 (2011) · Zbl 1269.65059
[21] Lieu, T.; Lesoinne, M., Parameter adaptation of reduced order models for three-dimensional flutter analysis (2004), AIAA Paper 2004-0888
[22] Lieu, T.; Farhat, C.; Lesoinne, M., POD-based aeroelastic analysis of a complete F-16 configuration: ROM adaptation and demonstration (2005), AIAA Paper 2005-2295
[23] Lieu, T.; Farhat, C., Adaptation of POD-based aeroelastic ROMs for varying Mach number and angle of attack: application to a complete F-16 configuration (2005), AIAA Paper 2005-7666
[24] Lieu, T.; Farhat, C.; Lesoinne, M., Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng., 195, 5730-5742 (2006) · Zbl 1124.76042
[25] Lieu, T.; Farhat, C., Adaptation of aeroelastic reduced-order models and application to an F-16 configuration, AIAA J., 45, 1244-1257 (2007)
[26] Amsallem, D.; Farhat, C., Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46, 7, 1803-1813 (2008)
[27] Amsallem, D.; Cortial, J.; Farhat, C., Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information, AIAA J., 48, 2029-2037 (2010)
[28] Amsallem, D.; Tezaur, R.; Farhat, C., Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes, J. Comput. Phys., 326, 373-397 (2016) · Zbl 1373.68446
[29] Mosquera, R.; Hamdouni, A.; El Hamidi, A.; Allery, C., POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds, Discrete Contin. Dyn. Syst., Ser. S, 12, 6, 1743-1759 (2018) · Zbl 1464.65056
[30] Mosquera, R.; El Hamidi, A.; Hamdouni, A.; Falaize, A., Generalization of the Neville-Aitken interpolation algorithm on Grassmann manifolds: applications to reduced order model (2019)
[31] Choi, Y.; Boncoraglio, G.; Anderson, S.; Amsallem, D.; Farhat, C., Gradient-based constrained optimization using a database of linear reduced-order models, J. Comput. Phys., 423, Article 109787 pp. (2020) · Zbl 07508406
[32] Lee, K.; Carlberg, K., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys., 404, Article 108973 pp. (2020) · Zbl 1454.65184
[33] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., A Fast and Accurate Physics-Informed Neural Network Reduced Order Model with Shallow Masked Autoencoder (2020)
[34] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 666-672 (2004) · Zbl 1061.65118
[35] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 1, 346-366 (2005) · Zbl 1288.65178
[36] Farhat, C.; Avery, P.; Chapman, T.; Cortial, J., Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng., 98, 9, 625-662 (2014) · Zbl 1352.74348
[37] Hernandez, J.; Caicedo, M.; Ferrer, A., Dimensional hyper-reduction of nonlinear finite element models via empirical cubature, Comput. Methods Appl. Mech. Eng., 313, 687-722 (2017) · Zbl 1439.74419
[38] Grimberg, S.; Farhat, C.; Tezaur, R.; Bou-Mosleh, C., Mesh Sampling and Weighting for the Hyperreduction of Nonlinear Petrov-Galerkin Reduced-Order Models with Local Reduced-Order Bases (2020)
[39] MacQueen, J., Some methods for classification and analysis of multivariate observations, (Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1967)), 281-297 · Zbl 0214.46201
[40] Aggarwal, C., Data Mining: The Textbook (2015), Springer International Publishing · Zbl 1311.68001
[41] Kaufmann, L.; Rousseeuw, P., Clustering by means of medoids, (Data Analysis Based on the L1-Norm and Related Methods (1987)), 405-416
[42] Aggarwal, C.; Reddy, C., Data Clustering: Algorithms and Applications, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series (2013), Taylor & Francis
[43] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics (2009), Springer · Zbl 1273.62005
[44] Jain, A. K.; Murty, M. N.; Flynn, P. J., Data clustering: a review, ACM Comput. Surv., 31, 264-323 (1999)
[45] Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.; Tiwari, A.; Er, M.; Ding, W.; Lin, C., A review of clustering techniques and developments, Neurocomputing, 267 (2017)
[46] Balabanov, O.; Nouy, A., Randomized linear algebra for model reduction—part II: minimal residual methods and dictionary-based approximation, Adv. Comput. Math., 47, 1-54 (2021) · Zbl 1465.65036
[47] Amsallem, D.; Haasdonk, B., PEBL-ROM: projection-error based local reduced-order models, Adv. Model. Simul. Eng. Sci., 3 (2016)
[48] Daniel, T.; Casenave, F.; Akkari, N.; Ryckelynck, D., Model order reduction assisted by deep neural networks (ROM-net), Adv. Model. Simul. Eng. Sci., 7 (2020)
[49] Henri, T.; Yvon, J., Convergence Estimates of POD-Galerkin Methods for Parabolic Problems, vol. 166, 295-306 (2006) · Zbl 1088.65576
[50] Gohberg, I.; Goldberg, S.; Kaashoek, M., Classes of Linear Operators, Classes of Linear Operators, vol. 1 (1990), Springer · Zbl 0745.47002
[51] Cheverry, C.; Raymond, N., Handbook of Spectral Theory (2019), lecture
[52] Djouadi, S., On the Optimality of the Proper Orthogonal Decomposition and Balanced Truncation, 4221-4226 (2009)
[53] Djouadi, S.; Sahyoun, S., On a generalization of the proper orthogonal decomposition and optimal construction of reduced order models, (2012 American Control Conference (ACC) (2012)), 1436-1441
[54] Sirovich, L., Turbulence and the dynamics of coherent structures, parts I, II and III, Q. Appl. Math., XLV, 561-590 (1987) · Zbl 0676.76047
[55] Chatterjee, A., An introduction to the proper orthogonal decomposition, Curr. Sci., 78, 808-817 (2000)
[56] Meyer, M.; Matthies, H., Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods, Comput. Mech., 31, 179-191 (2003) · Zbl 1038.74559
[57] Iollo, A.; Lombardi, D., Advection modes by optimal mass transfer, Phys. Rev. E, 89, Article 022923 pp. (2014)
[58] Reiss, J.; Schulze, P.; Sesterhenn, J.; Mehrmann, V., The Shifted Proper Orthogonal Decomposition: a mode decomposition for multiple transport phenomena, SIAM J. Sci. Comput., 40, A1322-A1344 (2018) · Zbl 1446.65212
[59] Cagniart, N.; Maday, Y.; Stamm, B.; Chetverushkin, B.; Fitzgibbon, W.; Kuznetsov, Y.; Neittaanmäki, P.; Periaux, J.; Pironneau, O., Model order reduction for problems with large convection effects, Contributions to Partial Differential Equations and Applications. Contributions to Partial Differential Equations and Applications, Comput. Methods Appl. Sci., 47 (2019) · Zbl 1416.35021
[60] Zimmermann, R.; Peherstorfer, B.; Willcox, K., Geometric subspace updates with applications to online adaptive nonlinear model reduction, SIAM J. Matrix Anal. Appl., 39 (2017)
[61] Kim, T.; James, D., Skipping steps in deformable simulation with online model reduction, ACM Trans. Graph., 28, 1-9 (2009)
[62] Ohlberger, M.; Schindler, F., Error control for the localized reduced basis multiscale method with adaptive on-line enrichment, SIAM J. Sci. Comput., 37, A2865-A2895 (2015) · Zbl 1329.65255
[63] Casenave, F.; Akkari, N., An error indicator-based adaptive reduced order model for nonlinear structural mechanics - application to high-pressure turbine blades, Math. Comput. Appl., 24, 2 (2019)
[64] He, W.; Avery, P.; Farhat, C., In-Situ Adaptive Reduction of Nonlinear Multiscale Structural Dynamics Models (2020)
[65] Peherstorfer, B.; Willcox, K., Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput., 37, A2123-A2150 (2015) · Zbl 1323.65102
[66] Peherstorfer, B., Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, SIAM J. Sci. Comput., 42, A2803-A2836 (2020) · Zbl 1453.65286
[67] Etter, P.; Carlberg, K., Online adaptive basis refinement and compression for reduced-order models via vector-space sieving, Comput. Methods Appl. Mech. Eng., 364 (2020) · Zbl 1442.65338
[68] Maday, Y.; Stamm, B., Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput., 35, A2417-A2441 (2013) · Zbl 1285.65009
[69] Kaulmann, S.; Haasdonk, B., Online greedy reduced basis construction using dictionaries, (VI International Conference on Adaptive Modeling and Simulation (ADMOS) (2012))
[70] Drohmann, M.; Haasdonk, B.; Ohlberger, M., Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations, vol. 4, 369-377 (2010) · Zbl 1246.76124
[71] Dihlmann, M.; Drohmann, M.; Haasdonk, B., Model Reduction of Parametrized Evolution Problems Using the Reduced Basis Method with Adaptive Time Partitioning (2011)
[72] Eftang, J.; Patera, A.; Ronquist, E., An “hp” certified reduced basis method for parametrized elliptic partial differential equations, SIAM J. Sci. Comput., 32, 3170-3200 (2010) · Zbl 1228.35097
[73] Haasdonk, B.; Dihlmann, M.; Ohlberger, M., A training set and multiple bases generation approach for parametrized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst., 17, 423-442 (2011) · Zbl 1302.65221
[74] Peherstorfer, B.; Butnaru, D.; Willcox, K.; Bungartz, H., Localized discrete empirical interpolation method, SIAM J. Sci. Comput., 36 (2014) · Zbl 1290.65080
[75] Kapteyn, M.; Knezevic, D.; Willcox, K., Toward predictive digital twins via component-based reduced-order models and interpretable machine learning, (AIAA Scitech 2020 Forum (2020))
[76] Kapteyn, M.; Willcox, K., From physics-based models to predictive digital twins via interpretable machine learning (2020)
[77] Amsallem, D.; Zahr, M.; Washabaugh, K., Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction, Adv. Comput. Math., 41 (2015) · Zbl 1331.65094
[78] Nguyen, F.; Barhli, S.; Muñoz, D.; Ryckelynck, D., Computer vision with error estimation for reduced order modeling of macroscopic mechanical tests, Complexity (2018)
[79] Buhr, A.; Iapichino, L.; Smetana, K., 6 Localized Model Reduction for Parameterized Problems, 245-306 (2020), De Gruyter
[80] Lee, K.; Carlberg, K., Deep Conservation: A Latent-Dynamics Model for Exact Satisfaction of Physical Conservation Laws (2020)
[81] Chaturantabut, S.; Sorensen, D., Discrete empirical interpolation for nonlinear model reduction, (Decision and Control, 2009, Held Jointly with the 2009 28th Chinese Control Conference, CDC/CCC 2009, Proceedings of the 48th IEEE Conference (2010)), 4316-4321
[82] Dupuis, R.; Jouhaud, J.-C.; Sagaut, P., Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions Using Machine Learning (2019)
[83] Mainini, L.; Willcox, K., Surrogate modeling approach to support real-time structural assessment and decision making, AIAA J., 53, 1612-1626 (2015)
[84] Daniel, T.; Casenave, F.; Akkari, N.; Ryckelynck, D., Data augmentation and feature selection for automatic model recommendation in computational physics, Math. Comput. Appl., 26 (2021)
[85] Gordon, A. D.; Henderson, J. T., An algorithm for Euclidean sum of squares classification, Biometrics, 33, 355-362 (1977) · Zbl 0357.62038
[86] Kaufman, L.; Leonard Kaufman, P.; Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis (1990), A Wiley-Interscience Publication, Wiley · Zbl 1345.62009
[87] Kaufman, L.; Rousseeuw, P., Clustering Large Data Sets, 425-437 (1986)
[88] Ng, R.; Han, J., Efficient and Effective Clustering Methods for Spatial Data Mining (1994), CAN, Technical Report
[89] Ng, R.; Han, J., CLARANS: a method for clustering objects for spatial data mining, IEEE Trans. Knowl. Data Eng., 14, 1003-1016 (2002)
[90] Schubert, E.; Rousseeuw, P., Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms, (Amato, G.; Gennaro, C.; Oria, V.; Radovanović, M., Similarity Search and Applications (2019), Springer International Publishing: Springer International Publishing Cham), 171-187
[91] Park, H.; Jun, C., A simple and fast algorithm for k-medoids clustering, Expert Syst. Appl., 36, 3336-3341 (2009)
[92] Bjorck, A.; Golub, G., Numerical methods for computing angles between linear subspaces, Math. Comput., 27, 123 (1973) · Zbl 0282.65031
[93] Conway, J.; Hardin, R.; Sloane, N., Packing lines, planes, etc.: packings in Grassmannian space, Exp. Math., 5, 139-159 (1996) · Zbl 0864.51012
[94] Ryckelynck, D.; Goessel, T.; Nguyen, F., Mechanical dissimilarity of defects in welded joints via Grassmann manifold and machine learning (2020), preprint
[95] Everson, R.; Sirovich, L., Karhunen-Loeve procedure for gappy data, JOSA A, 12 (1995)
[96] Daniel, T.; Casenave, F.; Akkari, N.; Ryckelynck, D., Optimal piecewise linear data compression for solutions of parametrized partial differential equations (2021), arXiv preprint
[97] Bachmayr, M.; Cohen, A., Kolmogorov widths and low-rank approximations of parametric elliptic PDEs, Math. Comput., 86, 701-724 (2017) · Zbl 1358.65072
[98] Moureau, V.; Domingo, P.; Vervisch, L., Design of a massively parallel CFD code for complex geometries, C. R., Méc., 339, 141-148 (2011) · Zbl 1217.76054
[99] Mines ParisTech and ONERA the French aerospace lab, Z-set: nonlinear material & structure analysis suite, 1981-present
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.