×

Stability and asymptotic analysis for instationary gas transport via relative energy estimates. (English) Zbl 1521.35136

This paper first studies (an equivalent reformulation of) the one-dimensional compressible barotropic Euler equations with gravitation and friction on a bounded interval, which models the gas flows in a pipe. Under the assumptions of non-degenerate pipe cross-section, no-vacuum, and no-concentration, the high-friction (i.e., parabolic) limit and the stability results with respect to coefficients and initial data are established.
The key ingredient of the proof is the estimates for the relative energy/entropy functional of an abstract evolutionary system (Equations (11) and (12)), which encompasses the above PDE model for pipe flow. It, in particular, only requires minimal regularity of pipe flow solutions.
Notably, such analyses can be naturally extended to study the gas flows in networks of pipes. See Section 5 of the paper.

MSC:

35Q31 Euler equations
35Q49 Transport equations
76N15 Gas dynamics (general theory)
35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Bamberger, A., Sorine, M., Yvon, J.: Analyse et controle d’un reseau de transport de gaz. Comput. Methods Appl. Sci. Eng. 1977(II), 345-359 (1979) · Zbl 0413.76056
[2] Brouwer, J.; Gasser, I.; Herty, M., Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9, 2, 601-623 (2011) · Zbl 1254.76124 · doi:10.1137/100813580
[3] Cardoso-Ribeiro, F.L., Matignon, D., Lefèvre, L.: A partitioned finite-element method (PFEM) for power-preserving discretization of open systems of conservation laws. arXiv:1906.05965 (2019)
[4] Carrillo, JA; Peng, Y.; Wróblewska-Kamińska, A., Relative entropy method for the relaxation limit of hydrodynamic models, Netw. Heterog. Media, 15, 369 (2020) · Zbl 1455.35181 · doi:10.3934/nhm.2020023
[5] Dafermos, CM, The second law of thermodynamics and stability, Arch. Rat. Mech. Anal., 70, 167-179 (1979) · Zbl 0448.73004 · doi:10.1007/BF00250353
[6] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer, Berlin (2016) · Zbl 1364.35003
[7] Di Perna, R., Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28, 137-188 (1979) · Zbl 0409.35057 · doi:10.1512/iumj.1979.28.28011
[8] Duan, R.; Liu, Q.; Zhu, C., Darcy’s law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Methods Appl. Sci., 25, 11, 2089-2151 (2015) · Zbl 1330.35318 · doi:10.1142/S0218202515500530
[9] Egger, H., A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40, 1, A108-A129 (2018) · Zbl 1394.76066 · doi:10.1137/16M1094373
[10] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham (2017). Second edition of [MR2499296] · Zbl 1432.76002
[11] Geng, S.; Huang, F., \(L^1\)-convergence rates to the Barenblatt solution for the damped compressible Euler equations, J. Differ. Equ., 266, 12, 7890-7908 (2019) · Zbl 1417.35101 · doi:10.1016/j.jde.2018.12.016
[12] Giesselmann, J.; Lattanzio, C.; Tzavaras, AE, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223, 3, 1427-1484 (2017) · Zbl 1359.35140 · doi:10.1007/s00205-016-1063-2
[13] Hauschild, S.-A., Marheineke, N., Mehrmann, V., Mohring, J., Badlyan, A.M., Rein, M., Schmidt, M.: Port-hamiltonian modeling of district heating networks. In: Progress in Differential-Algebraic Equations II, pp. 333-355. Springer International Publishing (2020) · Zbl 1453.93101
[14] Huang, F.; Marcati, P.; Pan, R., Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176, 1, 1-24 (2005) · Zbl 1064.76090 · doi:10.1007/s00205-004-0349-y
[15] Huang, F.; Pan, R.; Wang, Z., \(L^1\) convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200, 2, 665-689 (2011) · Zbl 1229.35196 · doi:10.1007/s00205-010-0355-1
[16] Junca, S.; Rascle, M., Strong relaxation of the isothermal Euler system to the heat equation, Z. Angew. Math. Phys., 53, 2, 239-264 (2002) · Zbl 0997.35035 · doi:10.1007/s00033-002-8154-7
[17] Jüngel, A.: Entropy methods for diffusive partial differential equations. SpringerBriefs in Mathematics. Springer, Cham (2016) · Zbl 1361.35002
[18] Lattanzio, C.; Tzavaras, AE, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45, 3, 1563-1584 (2013) · Zbl 1277.35246 · doi:10.1137/120891307
[19] Lattanzio, C.; Tzavaras, AE, From gas dynamics with large friction to gradient flows describing diffusion theories, Commun. Partial Differ. Equ., 42, 2, 261-290 (2017) · Zbl 1367.35090 · doi:10.1080/03605302.2016.1269808
[20] Liljegren-Sailer, B.: On port-Hamiltonian modeling and structure-preserving model reduction. Doctoralthesis, Universität Trier (2020)
[21] Lin, C.; Coulombel, J-F, The strong relaxation limit of the multidimensional Euler equations, NoDEA Nonlinear Differ. Equ. Appl., 20, 3, 447-461 (2013) · Zbl 1268.35099 · doi:10.1007/s00030-012-0159-0
[22] Marcati, P.; Milani, A., The one-dimensional Darcy’s law as the limit of a compressible Euler flow, J. Differ. Equ., 84, 1, 129-147 (1990) · Zbl 0715.35065 · doi:10.1016/0022-0396(90)90130-H
[23] Mehrmann, V., Morandin, R.: Structure-preserving discretization for port-Hamiltonian descriptor systems. In: 58th Conference on Decision and Control (CDC). IEEE (2019)
[24] Osiadacz, AJ, Simulation and Analysis of Gas Networks (1987), Houston: Gulf Publishing Company, Houston
[25] Raviart, P-A, Sur la résolution de certaines équations paraboliques non linéaires, J. Funct. Anal., 5, 299-328 (1970) · Zbl 0199.42401 · doi:10.1016/0022-1236(70)90031-5
[26] Reigstad, GA, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9, 1, 65-95 (2014) · Zbl 1304.35523 · doi:10.3934/nhm.2014.9.65
[27] Schöbel-Kröhn, L., Analysis and numerical approximation of nonlinear evolution equations on network structures (2020), München: Dr. Hut-Verlag, München · Zbl 1457.35003
[28] van der Schaft, A.; Jeltsema, D., Port-Hamiltonian systems theory: an introductory overview, Found. Trends Syst. Control, 1, 173-378 (2014) · Zbl 1496.93055 · doi:10.1561/2600000002
[29] van der Schaft, AJ; Maschke, BM, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. Geom. Phys., 42, 1-2, 166-194 (2002) · Zbl 1012.70019 · doi:10.1016/S0393-0440(01)00083-3
[30] Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987) Translated from the German by C. B. Thomas and M. J. Thomas · Zbl 0623.35006
[31] Xu, J.; Kawashima, S., Diffusive relaxation limit of classical solutions to the damped compressible Euler equations, J. Differ. Equ., 256, 2, 771-796 (2014) · Zbl 1329.35238 · doi:10.1016/j.jde.2013.09.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.