×

\(L ^1\) convergence to the Barenblatt solution for compressible Euler equations with damping. (English) Zbl 1229.35196

From the text: We study asymptotic behaviour of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping
\[ \begin{cases} \rho_t+(\rho u)_x=0 ,\\ (\rho u)_t+(\rho u^2+p(\rho))_x=-\alpha \rho u ,\\ \rho(x,0)=\rho_0 (x),\\ u(x,0)=u_0(x) . \end{cases} \]
As \(t\to \infty\), the density is conjectured to obey the well-known porus medium equation and the momentum is expected to be formulated by Darcy’s law.
\[ \begin{cases} \overline{\rho}_t=(\overline{\rho} ^{\gamma})_{xx} ,\\ \overline m =-(\overline{\rho}^{\gamma})_x . \end{cases} \]
In this paper, we prove that any \(L^\infty\) weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural \(L^1\) topology with decay rates to the Barenblatt profile of the porus medium equation. The density function tends to the Barenblatt solution of the porus medium equation, while the momentum is described by Darcy’s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.

MSC:

35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Aronson, D.G.: The porous media equations. “<Emphasis Type=”Italic“>Nonlinear Diffusion Problem”, Lecture Notes in Math., Vol. 1224 (Eds. Fasano A. and Primicerio M.) Springer, Berlin, 1986
[2] Barenblatt G.I.: On one class of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i Mekh. 17, 739-742 (1953) · Zbl 0053.46103
[3] Brezis H., Crandall M.: Uniqueness of solutions of the initial-value problem for \[{u_t-\Delta\phi(u)=0}\]. J. Math. pures et. appl. 58, 153-163 (1979) · Zbl 0408.35054
[4] Carrillo J.A., Toscani G.: Asymptotic L1-decay of solutions of the Porous Medium Equation to self-similarity. Indiana U. Math. J. 49, 113-142 (2000) · Zbl 0963.35098 · doi:10.1512/iumj.2000.49.1756
[5] Chen G., Frid H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147, 89-118 (1999) · Zbl 0942.35111 · doi:10.1007/s002050050146
[6] Chueh K., Conley C., Smoller J.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana U. Math. J. 26, 373-392 (1977) · Zbl 0368.35040 · doi:10.1512/iumj.1977.26.26029
[7] Dafermos C.M.: A system of hyperbolic conservation laws with frictional damping. Z. Angew. Math. Phys. 46, 294-307 (1995) · Zbl 0836.35091
[8] Dafermos C.M.: Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18, 409-421 (1987) · Zbl 0655.35055 · doi:10.1137/0518031
[9] Dafermos C.M., Pan R.: Global BV solutions for the p-system with frictional damping. SIAM J. Math. Anal. 41(3), 1190-1205 (2009) · Zbl 1194.35255 · doi:10.1137/080735126
[10] Ding X., Chen G., Luo P.: Convergence of the fractional step Lax-Friedrichs and Godunov scheme for isentropic system of gas dynamics. Commun. Math. Phys 121, 63-84 (1989) · Zbl 0689.76022 · doi:10.1007/BF01218624
[11] Diperna R.: Convergence of viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1-30 (1983) · Zbl 0533.76071 · doi:10.1007/BF01206047
[12] Hsiao L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific, Singapore (1997) · Zbl 0911.35003
[13] Hsiao L., Liu T.: Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Commun. Math. Phys. 143, 599-605 (1992) · Zbl 0763.35058 · doi:10.1007/BF02099268
[14] Hsiao L., Liu T.: Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chin. Ann. Math. 14B(4), 465-480 (1993) · Zbl 0804.35072
[15] Hsiao L., Luo T.: Nonlinear diffusive phenomena of entropy weak solutions for a system of quasilinear hyperbolic conservation laws with damping. Q. Appl. Math. 56(1), 173-198 (1998) · Zbl 0953.35094 · doi:10.1090/qam/1604829
[16] Hsiao L., Pan R.: The damped p-system with boundary effects. Contemp. Math. 255, 109-123 (2000) · Zbl 0959.35111 · doi:10.1090/conm/255/03977
[17] Hsiao L., Tang S.: Construction and qualitative behavior of solutions for a system of nonlinear hyperbolic conservation laws with damping. Q. Appl. Math. LIII(3), 487-505 (1995) · Zbl 0852.35095 · doi:10.1090/qam/1343463
[18] Hsiao L., Tang S.: Construction and qualitative behavior of solutions of perturbated Riemann problem for the system of one-dimensional isentropic flow with damping. J. Differ. Equ. 123(2), 480-503 (1995) · Zbl 0853.35069 · doi:10.1006/jdeq.1995.1170
[19] Huang F., Pan R.: Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum. J. Differ. Equ. 220, 207-233 (2006) · Zbl 1082.35031 · doi:10.1016/j.jde.2005.03.012
[20] Huang F., Pan R.: Convergence rate for compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal. 166, 359-376 (2003) · Zbl 1022.76042 · doi:10.1007/s00205-002-0234-5
[21] Huang F., Marcati P., Pan R.: Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal. 176, 1-24 (2005) · Zbl 1064.76090 · doi:10.1007/s00205-004-0349-y
[22] Huang F., Pan R., Yu H.: Large time behavior of Euler-Poisson system for semiconductor. Sci. China Ser. A: Math. 51, 965-972 (2008) · Zbl 1149.35317 · doi:10.1007/s11425-008-0049-4
[23] Kamin S.: Source-type solutions for equations of nonstationary filtration. J. Math. Anal. Appl. 64, 263-276 (1978) · Zbl 0387.76083 · doi:10.1016/0022-247X(78)90036-7
[24] Lions P.L., Perthame B., Tadmor E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163, 169-172 (1994) · Zbl 0799.35151 · doi:10.1007/BF02102014
[25] Lions P.L., Perthame B., Souganidis P.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 49, 599-638 (1996) · Zbl 0853.76077 · doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
[26] Liu T.: Compressible flow with damping and vacuum. Japan J. Appl. Math. 13(1), 25-32 (1996) · Zbl 0865.35107 · doi:10.1007/BF03167296
[27] Luskin M., Temple B.: The existence of a global weak solution to the nonlinear water-hammar problem. Commun. Pure Appl. Math. 35, 697-735 (1982) · Zbl 0489.35054 · doi:10.1002/cpa.3160350505
[28] Liu T., Yang T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223-237 (1997) · Zbl 0890.35111 · doi:10.1006/jdeq.1997.3281
[29] Liu T., Yang T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495-509 (2000) · Zbl 1033.76050
[30] Luo T., Yang T.: Interaction of elementary waves for compressible Euler equations with frictional damping. J. Differ. Equ. 161, 42-86 (2000) · Zbl 0957.35111 · doi:10.1006/jdeq.1999.3689
[31] Marcati P., Milani A.: The one dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129-147 (1990) · Zbl 0715.35065 · doi:10.1016/0022-0396(90)90130-H
[32] Marcati P., Rubino B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359-399 (2000) · Zbl 0987.35103 · doi:10.1006/jdeq.1999.3676
[33] Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ. Math. D’Orsay 46-53 (1978) · Zbl 0392.76065
[34] Nishihara K.: Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping. J. Differ. Equ. 131, 171-188 (1996) · Zbl 0866.35066 · doi:10.1006/jdeq.1996.0159
[35] Nishihara K., Wang W., Yang T.: Lp-convergence rate to nonlinear diffusion waves for p-system with damping. J. Differ. Equ. 161, 191-218 (2000) · Zbl 0946.35012 · doi:10.1006/jdeq.1999.3703
[36] Nishihara K., Yang T.: Boundary effect on asymptotic behavior of solutions to the p-system with damping. J. Differ. Equ. 156, 439-458 (1999) · Zbl 0933.35121 · doi:10.1006/jdeq.1998.3598
[37] Ogawa T.: Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type. Diff. Integr. Equ. 21, 1113-1154 (2008) · Zbl 1224.35229
[38] Perthame B., Tzavaras A.: Kinetic formulation for system of two conservation laws and elastodynamics. Arch. Ration. Mech. Anal. 155, 1-48 (2000) · Zbl 0980.35092 · doi:10.1007/s002050000109
[39] Pan R., Zhao K.: Initial boundary value problem for compressible Euler equations with damping. Indiana Univ. Math. J. 57, 2257-2282 (2008) · Zbl 1169.35040 · doi:10.1512/iumj.2008.57.3366
[40] Peletier L.A., Van Duyn C.J.: A class of similarity solutions of the nonlinear diffusion equations. Nonlinear Anal. TMA 1, 223-233 (1977) · Zbl 0394.34016 · doi:10.1016/0362-546X(77)90032-3
[41] Serre D.: Domaines invariants pour les systémes hyperboliques de lois de conservation. J. Differ. Equ. 69, 46-62 (1987) · Zbl 0626.35061 · doi:10.1016/0022-0396(87)90102-1
[42] Serre D., Xiao L.: Asymptotic behavior of large weak entropy solutions of the damped p-system. J. Pure. Differ. Equ. 10, 355-368 (1997) · Zbl 0891.35092
[43] Smoller J.A.: Shock Waves and Reaction-Diffusion equations. Springer, New York (1980) · Zbl 0807.35002
[44] Zhao H.: Convergence to strong nonlinear diffusion waves for solutions of p-system with damping. J. Differ. Equ. 174, 200-236 (2001) · Zbl 0990.35091 · doi:10.1006/jdeq.2000.3936
[45] Zheng Y.: Global smooth solutions to the adiabatic gas dynamics system with dissipation terms. Chinese Ann. Math. 17A, 155-162 (1996) · Zbl 0875.35050
[46] Zhu C.J.: Convergence of viscosity solutions for the system Of nonlinear elasticity. J. Math. Anal. Appl. 209, 585-604 (1997) · Zbl 0879.73013 · doi:10.1006/jmaa.1997.5372
[47] Zhu C.J.: Convergence Rates to Nonlinear Diffusion Waves for Weak Entropy Solutions to p-System with Damping. Sci. China Ser. A 46, 562-575 (2003) · Zbl 1215.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.