×

Multiplicity and concentration properties for \((p,q)\)-Kirchhoff non-autonomous problems with Choquard nonlinearity. (English) Zbl 1534.35229

Summary: In this paper, we study the following \((p, q)\)-Kirchhoff problem with Choquard nonlinearity: \begin{align*} - & (1+a \int\limits_{\mathbb{R}^N}|\nabla u|^pdx)\Delta_p u\\ - & (1+b\int\limits_{\mathbb{R}^N}|\nabla u|^qdx)\Delta_q u+V_{\varepsilon}(x)(|u|^{p-2}u+|u|^{q-2}u)\\ = & (|x|^{-\mu}\ast F(u))f(u)\text{ in }\mathbb{R}^N, \end{align*} where \(\varepsilon\) is a small positive parameter, \(a,b\) are positive constants, \(1<p<q<N\), \(q<2p\), \(\Delta_su=\operatorname{div}(|\nabla u|^{s-2}\nabla u)\) with \(s\in\{p,q\}\) is the \(s\)-Laplacian, the potential \(V:\mathbb{R}^N\to\mathbb{R}\) is continuous, \(V_{\varepsilon}(x)=V(\varepsilon x)\), \(0<\mu<q\), \(f\) is a continuous nonlinearity, and \(F\) is the primitive of \(f\). The main result in this paper establishes multiplicity and concentration properties of positive solutions under weaker hypotheses. The proofs combine nonstandard Nehari manifold methods, penalization techniques and the Ljusternik-Schnirelmann category theory.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65, 1975, Academic Press: Academic Press New York-London · Zbl 0314.46030
[2] Alves, C. O.; da Silva, A. R., Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space, J. Math. Phys., 57, Article 111502 pp., 2016 · Zbl 1367.35082
[3] Alves, C. O.; Figueiredo, G. M., Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 11, 2, 265-294, 2011 · Zbl 1231.35006
[4] Alves, C. O.; Figueiredo, G. M., On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(\mathbb{R}^N\), J. Differ. Equ., 246, 3, 1288-1311, 2009 · Zbl 1160.35024
[5] Alves, C. O.; Yang, M., Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., 55, 2014, 21 pp. · Zbl 1293.35352
[6] Alves, C. O.; Yang, M., Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. R. Soc. Edinb., Sect. A, 146, 23-58, 2016 · Zbl 1366.35050
[7] Ambrosio, V.; Rădulescu, V. D., Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl. (9), 142, 101-145, 2020 · Zbl 1448.35538
[8] Ambrosio, V.; Repovš, D., Multiplicity and concentration results for a \((p, q)\)-Laplacian problem in \(\mathbb{R}^N\), Z. Angew. Math. Phys., 72, 2021, 33 pp. · Zbl 1467.35184
[9] Ambrosio, V.; Isernia, T., A multiplicity result for a (p,q)-Schrödinger-Kirchhoff type equation, Ann. Mat. Pura Appl., 201, 943-984, 2022 · Zbl 1486.35200
[10] Ball, J. M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 306, 557-611, 1982 · Zbl 0513.73020
[11] Cingolani, S.; Lazzo, M., Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160, 1, 118-138, 2000 · Zbl 0952.35043
[12] De Giorgi, E., Sulla diferenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., 3, 3, 25-43, 1957 · Zbl 0084.31901
[13] Deng, Y.; Shuai, W.; Zhong, X., Existence and Concentration Results for the General Kirchhoff-Type Equations, J. Geom. Anal., 33, 2023 · Zbl 1507.35017
[14] Du, Y.; Su, J.; Wang, C., On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 505, 1, Article 125446 pp., 2022 · Zbl 1479.35336
[15] Fan, H.; Liu, X., On the multiplicity and concentration of positive solutions to a Kirchhoff-type problem with competing potentials, J. Math. Phys., 63, 2022, 26 pp. · Zbl 1507.35014
[16] Fan, X.; Zhao, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal., Theory Methods Appl., 36, 3, 295-318, 1999 · Zbl 0927.46022
[17] Figueiredo, G. M.; Ikoma, N.; Santos, J. R., Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 213, 931-979, 2014 · Zbl 1302.35356
[18] Gupta, S.; Dwivedi, G., Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti-Rabinowitz condition, Rend. Circ. Mat. Palermo (2) Suppl., 2023
[19] He, C.; Li, G., The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q-Laplacians, Ann. Acad. Sci. Fenn., Math., 33, 2, 337-371, 2008 · Zbl 1159.35023
[20] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\), J. Differ. Equ., 252, 1813-1834, 2012 · Zbl 1235.35093
[21] He, Y.; Li, G.; Peng, S., Concentrating bound states for Kirchhof type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud., 14, 2, 483-510, 2014 · Zbl 1305.35033
[22] Ji, C.; Rădulescu, V. D., Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Isr. J. Math., 241, 465-500, 2021 · Zbl 1465.35140
[23] Kirchhoff, G., 1883, B.G. Teubner: B.G. Teubner Mechanik, Leipzig
[24] Ladyzhenskaya, O. A.; Ural’tseva, N. N., Linear and Quasilinear Elliptic Equations, 1968, Academic Press: Academic Press Cambridge · Zbl 0164.13002
[25] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 93-105, 1976/77 · Zbl 0369.35022
[26] Lieb, E.; Loss, M., Analysis, Graduate Studies in Mathematics, 2001, American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0966.26002
[27] Li, G.; Ye, H., On the concentration phenomenon of \(L^2\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differ. Equ., 266, 7101-7123, 2019 · Zbl 1423.35106
[28] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 4, 223-283, 1984 · Zbl 0704.49004
[29] Liu, W.; Dai, G., Existence and multiplicity results for double phase problem, J. Differ. Equ., 265, 9, 4311-4334, 2018 · Zbl 1401.35103
[30] Lv, P.; Lin, G.; Lv, X., The asymptotic behaviors of solutions for higher-order \(( m_1, m_2)\)-coupled Kirchhoff models with nonlinear strong damping, Demonstr. Math., 56, Article 20220197 pp., 2023 · Zbl 1512.35107
[31] Pekar, S., Untersuchungen über die Elektronentheorie der Kristalle, 1954, Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0058.45503
[32] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., 13, 457-468, 1960 · Zbl 0111.09301
[33] Szulkin, A.; Weth, T., The method of Nehari manifold, (Gao, D. Y.; Motreanu, D., Handbook of Nonconvex Analysis and Applications, 2010, International Press: International Press Boston), 597-632 · Zbl 1218.58010
[34] Toscano, L.; Vetro, C.; Wardowski, D., Systems of Kirchhoff type equations with gradient dependence in the reaction term via subsolution-supersolution method, Discrete Contin. Dyn. Syst., Ser. S, 16, 2213-2229, 2023 · Zbl 1533.35126
[35] Trudinger, N. S., On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20, 721-747, 1967 · Zbl 0153.42703
[36] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, 1996, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, x+162 pp. · Zbl 0856.49001
[37] Zhang, J.; Bao, X.; Zhang, J., Existence and concentration of solutions to Kirchhoff-type equations in \(\mathbb{R}^2\) with steep potential well vanishing at infinity and exponential critical nonlinearities, Adv. Nonlinear Anal., 12, 1-22, 2023, (Paper No. 20220317) · Zbl 1519.35163
[38] Zhang, Y.; Tang, X.; Rădulescu, V. D., Concentration of solutions for fractional double-phase problems: critical and supercritical cases, J. Differ. Equ., 302, 139-184, 2021 · Zbl 1481.35385
[39] Zhang, W.; Yuan, S.; Wen, L., Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal., 11, 1552-1578, 2022 · Zbl 1494.35173
[40] Zhang, W.; Zhang, J.; Rădulescu, V. D., Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equ., 347, 56-103, 2023 · Zbl 1505.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.