×

An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model. (English) Zbl 1505.62099

Summary: The Cox model is an exceedingly popular semiparametric hazard regression model for the analysis of time-to-event accompanied by explanatory variables. Within the ultrahigh-dimensional data setting, not like the marginal screening strategy, there is a joint feature screening method based on the partial likelihood of the Cox model but it leaves computational feasibility unsolved. In this paper, we develop an enhanced iterative hard-thresholding algorithm by adapting the non-monotone proximal gradient method under the Cox model. The proposed algorithm is efficient because it is computationally both effective and fast. Meanwhile, our proposed algorithm begins with a LASSO initial estimator rather than the naive zero initial and still enjoys sure screening in theory and further enhances the computational efficiency in practice. We also give a rigorous theory proof. The advantage of our proposed work is demonstrated by numerical studies and illustrated by the diffuse large B-cell lymphoma data example.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G08 Nonparametric regression and quantile regression
62J07 Ridge regression; shrinkage estimators (Lasso)
62N01 Censored data models
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Andersen, PK; Gill, RD, Cox’s regression model for counting processes: a large sample study, Ann Stat, 10, 4, 1100-1120 (1982) · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[2] Barzilai, J.; Borwein, JM, Two-point step size gradient methods, IMA J Numer Anal, 8, 1, 141-148 (1988) · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[3] Bickel, PJ; Ritov, Y.; Tsybakov, AB, Simultaneous analysis of Lasso and Dantzig selector, Ann Stat, 37, 4, 1705-1732 (2009) · Zbl 1173.62022 · doi:10.1214/08-AOS620
[4] Bradic, J.; Fan, J.; Jiang, J., Regularization for Cox’s proportional hazards model with NP-dimensionality, Ann Stat, 39, 6, 3092-3120 (2011) · Zbl 1246.62202 · doi:10.1214/11-AOS911
[5] Breslow, N., Covariance analysis of censored survival data, Biometrics, 30, 1, 89-99 (1974) · doi:10.2307/2529620
[6] Chen, X.; Lu, Z.; Pong, TK, Penalty methods for a class of non-Lipschitz optimization problems, SIAM J Optim, 26, 3, 1465-1492 (2016) · Zbl 1342.90181 · doi:10.1137/15M1028054
[7] Chen, X.; Chen, X.; Wang, H., Robust feature screening for ultra-high dimensional right censored data via distance correlation, Comput Stat Data Anal, 119, 118-138 (2018) · Zbl 1469.62043 · doi:10.1016/j.csda.2017.10.004
[8] Cox, DR, Partial likelihood, Biometrika, 62, 2, 269-276 (1975) · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269
[9] Fan, J.; Lv, J., Sure independence screening for ultrahigh dimensional feature space, J R Stat Soc Ser B, 70, 5, 849-911 (2008) · Zbl 1411.62187 · doi:10.1111/j.1467-9868.2008.00674.x
[10] Fan, J.; Song, R., Sure independence screening in generalized linear models with NP-dimensionality, Ann Stat, 38, 6, 3567-3604 (2010) · Zbl 1206.68157 · doi:10.1214/10-AOS798
[11] Fan, J.; Samworth, R.; Wu, Y., Ultrahigh dimensional variable selection: beyond the linear model, J Mach Learn Res, 70, 2013-2038 (2009) · Zbl 1235.62089
[12] Fan J, Feng Y, Wu Y (2010) High-dimensional variable selection for Cox’s proportional hazards model. In: Borrowing strength: theory powering applications—a festschrift for Lawrence D. Brown, Institute of Mathematical Statistics, pp 70-86
[13] Fleming, TR; Harrington, DP, Counting processes and survival analysis (2011), New York: Wiley, New York · Zbl 1079.62093
[14] Gong P, Zhang C, Lu Z, Huang J, Ye J (2013) A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: International conference on machine learning, pp 37-45
[15] Gorst-Rasmussen, A.; Scheike, T., Independent screening for single-index hazard rate models with ultrahigh dimensional features, J R Stat Soc Ser B, 75, 2, 217-245 (2013) · Zbl 07555446 · doi:10.1111/j.1467-9868.2012.01039.x
[16] He, X.; Wang, L.; Hong, HG, Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data, Ann Stat, 41, 1, 342-369 (2013) · Zbl 1295.62053 · doi:10.1214/13-AOS1087
[17] Hong, HG; Chen, X.; Christiani, DC; Li, Y., Integrated powered density: screening ultrahigh dimensional covariates with survival outcomes, Biometrics, 74, 2, 421-429 (2018) · Zbl 1415.62101 · doi:10.1111/biom.12820
[18] Huang, J.; Sun, T.; Ying, Z.; Yu, Y.; Zhang, CH, Oracle inequalities for the Lasso in the Cox model, Ann Stat, 41, 3, 1142-1165 (2013) · Zbl 1292.62135 · doi:10.1214/13-AOS1098
[19] Lai, P.; Liu, Y.; Liu, Z.; Wan, Y., Model free feature screening for ultrahigh dimensional data with responses missing at random, Comput Stat Data Anal, 105, 201-216 (2017) · Zbl 1466.62125 · doi:10.1016/j.csda.2016.08.008
[20] Liu, Y.; Chen, X., Quantile screening for ultra-high-dimensional heterogeneous data conditional on some variables, J Stat Comput Simul, 88, 2, 329-342 (2018) · Zbl 07192555 · doi:10.1080/00949655.2017.1389944
[21] Liu, Y.; Zhang, J.; Zhao, X., A new nonparametric screening method for ultrahigh-dimensional survival data, Comput Stat Data Anal, 119, 74-85 (2018) · Zbl 1469.62107 · doi:10.1016/j.csda.2017.10.003
[22] Ma, S.; Li, R.; Tsai, CL, Variable screening via quantile partial correlation, J Am Stat Assoc, 112, 518, 650-663 (2017) · doi:10.1080/01621459.2016.1156545
[23] Meinshausen, N.; Bühlmann, P., High-dimensional graphs and variable selection with the Lasso, Ann Stat, 34, 1436-1462 (2006) · Zbl 1113.62082
[24] Metzeler, KH; Hummel, M.; Bloomfield, CD; Spiekermann, K.; Braess, J.; Sauerland, MC; Heinecke, A.; Radmacher, M.; Marcucci, G.; Whitman, SP, An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia, Blood, 112, 10, 4193-4201 (2008) · doi:10.1182/blood-2008-02-134411
[25] Oberthuer, A.; Berthold, F.; Warnat, P.; Hero, B.; Kahlert, Y.; Spitz, R.; Ernestus, K.; Konig, R.; Haas, S.; Eils, R., Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification, J Clin Oncol, 24, 31, 5070-5078 (2006) · doi:10.1200/JCO.2006.06.1879
[26] Rosenwald, A.; Wright, G.; Chan, WC; Connors, JM; Campo, E.; Fisher, RI; Gascoyne, RD; Muller-Hermelink, HK; Smeland, EB; Giltnane, JM, The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma, N Engl J Med, 346, 25, 1937-1947 (2002) · doi:10.1056/NEJMoa012914
[27] Rosenwald, A.; Wright, G.; Wiestner, A.; Chan, WC; Connors, JM; Campo, E.; Gascoyne, RD; Grogan, TM; Muller-Hermelink, HK; Smeland, EB, The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma, Cancer Cell, 3, 2, 185-197 (2003) · doi:10.1016/S1535-6108(03)00028-X
[28] She, Y., Thresholding-based iterative selection procedures for model selection and shrinkage, Electron J Stat, 3, 384-415 (2009) · Zbl 1326.62158 · doi:10.1214/08-EJS348
[29] Song, R.; Lu, W.; Ma, S.; Jessie Jeng, X., Censored rank independence screening for high-dimensional survival data, Biometrika, 101, 4, 799-814 (2014) · Zbl 1306.62207 · doi:10.1093/biomet/asu047
[30] Tibshirani, R., The lasso method for variable selection in the Cox model, Stat Med, 16, 4, 385-395 (1997) · doi:10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
[31] van Wieringen, WN; Kun, D.; Hampel, R.; Boulesteix, AL, Survival prediction using gene expression data: a review and comparison, Comput Stat Data Anal, 53, 5, 1590-1603 (2009) · Zbl 1453.62225 · doi:10.1016/j.csda.2008.05.021
[32] Wright, SJ; Nowak, RD; Figueiredo, MA, Sparse reconstruction by separable approximation, IEEE Trans Signal Process, 57, 7, 2479-2493 (2009) · Zbl 1391.94442 · doi:10.1109/TSP.2009.2016892
[33] Wu, Y.; Yin, G., Conditional quantile screening in ultrahigh-dimensional heterogeneous data, Biometrika, 102, 1, 65-76 (2015) · Zbl 1345.62097 · doi:10.1093/biomet/asu068
[34] Xu, C.; Chen, J., The sparse mle for ultrahigh-dimensional feature screening, J Am Stat Assoc, 109, 507, 1257-1269 (2014) · Zbl 1368.62295 · doi:10.1080/01621459.2013.879531
[35] Yang L (2017) Proximal gradient method with extrapolation and line search for a class of nonconvex and nonsmooth problems. ArXiv preprint arXiv:1711.06831
[36] Yang, G.; Yu, Y.; Li, R.; Buu, A., Feature screening in ultrahigh dimensional Cox’s model, Stat Sin, 26, 881 (2016) · Zbl 1356.62175
[37] Zhang T (2009) Multi-stage convex relaxation for learning with sparse regularization. In: Advances in neural information processing systems, pp 1929-1936
[38] Zhang, J.; Liu, Y.; Wu, Y., Correlation rank screening for ultrahigh-dimensional survival data, Comput Stat Data Anal, 108, 121-132 (2017) · Zbl 1466.62226 · doi:10.1016/j.csda.2016.11.005
[39] Zhao, SD; Li, Y., Principled sure independence screening for Cox models with ultra-high-dimensional covariates, J Multivar Anal, 105, 1, 397-411 (2012) · Zbl 1233.62173 · doi:10.1016/j.jmva.2011.08.002
[40] Zhao, P.; Yu, B., On model selection consistency of Lasso, J Mach Learn Res, 7, 2541-2563 (2006) · Zbl 1222.62008
[41] Zhou, T.; Zhu, L., Model-free feature screening for ultrahigh dimensional censored regression, Stat Comput, 27, 4, 947-961 (2017) · Zbl 1384.62144 · doi:10.1007/s11222-016-9664-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.