×

Some new approximations and inequalities of the sequence \((1+1/n)^n\) and improvements of Carleman’s inequality. (English) Zbl 1370.26005

Summary: In this paper, using the polynomial approximation and the continued fraction approximation, we present some sharp inequalities for the sequence \((1+1/n)^n\) and some applications to Carleman’s inequality. For demonstrating the superiority of our new inequalities over the classical one, some proofs and numerical computations are provided.

MSC:

26A09 Elementary functions
26D15 Inequalities for sums, series and integrals
11Y65 Continued fraction calculations (number-theoretic aspects)
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Nation Bureau of Standards, Applied Mathematical Series 55, 9th printing. Dover, New York (1972) · Zbl 0543.33001
[2] Hu, Y.: A strengthened Carleman’s inequality. Commun. Math. Anal. 1(2), 115-119 (2006) · Zbl 1156.26306
[3] Lu, D.: Some new convergent sequences and inequalities of Euler’s constant. J. Math. Anal. Appl. 419, 541-552 (2014) · Zbl 1300.40002 · doi:10.1016/j.jmaa.2014.05.018
[4] Lu, D., Wang, X.: A new asymptotic expansion and some inequalities for the Gamma function. J. Math. Anal. Appl. 140, 314-323 (2014) · Zbl 1296.33006 · doi:10.1016/j.jmaa.2014.01.050
[5] Lu, D., Song, L., Ma, C.: A generated approximation of the gamma function related to Windschitl’s formula. J. Number Theory. 140, 215-225 (2014) · Zbl 1296.33005 · doi:10.1016/j.jnt.2014.01.023
[6] Lu, D., Song, L., Yu, Y.: Some new continued fraction approximation of Euler’s constant. J. Number Theory. 147, 69-80 (2014) · Zbl 1394.11082 · doi:10.1016/j.jnt.2014.07.002
[7] Mortici, C.: Product approximations via asymptotic integration. Am. Math. Mon. 117(5), 434-441 (2010) · Zbl 1214.40002 · doi:10.4169/000298910x485950
[8] Mortici, C.: A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402, 405-410 (2013) · Zbl 1333.40001 · doi:10.1016/j.jmaa.2012.11.023
[9] Mortici, C., Hu, Y.: On some convergences to the constant e and improvements of Carleman’s inequality. Carpathian J. Math. 31(2), 243-249 (2015) · Zbl 1349.26062
[10] Ping, Y., Sun, G.: A strengthened Carleman’s inequality. J. Math. Anal. Appl. 240, 290-293 (1999) · Zbl 0941.26012 · doi:10.1006/jmaa.1999.6583
[11] Pólya, G.: Proof of an inequality. Proc. Lond. Math. Soc. 24(2), 55 (1925) · JFM 52.0211.03
[12] Pólya, G.: With, or without motivation? Am. Math. Mon. 56, 684-691 (1949) · doi:10.2307/2305566
[13] Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. I. Springer, New York (1972) · Zbl 0236.00003 · doi:10.1007/978-1-4757-1640-5
[14] Yang, X.: On Carleman’s inequality. J. Math. Anal. Appl. 253, 691-694 (2001) · Zbl 0984.26006 · doi:10.1006/jmaa.2000.7155
[15] Yang, B., Debnath, L.: Some inequalities involving the constant e and an application to Carleman’s inequality. J. Math. Anal. Appl. 223, 347-353 (1998) · Zbl 0910.26011 · doi:10.1006/jmaa.1997.5617
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.