×

Analysis of a class of fractional nonlinear multidelay differential systems. (English) Zbl 1400.34128

Summary: We address existence and Ulam-Hyers and Ulam-Hyers-Mittag-Leffler stability of fractional nonlinear multiple time-delays systems with respect to two parameters’ weighted norm, which provides a foundation to study iterative learning control problem for this system. Secondly, we design PID-type learning laws to generate sequences of output trajectories to tracking the desired trajectory. Two numerical examples are used to illustrate the theoretical results.

MSC:

34K37 Functional-differential equations with fractional derivatives
93C23 Control/observation systems governed by functional-differential equations
34K27 Perturbations of functional-differential equations
34K35 Control problems for functional-differential equations
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations, (1993), Hoboken, NJ, USA: John Wiley, Hoboken, NJ, USA · Zbl 0789.26002
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, New York, NY, USA, (2006), Elsevier · Zbl 1092.45003
[3] Abbas, S.; Benchohra, M.; N’Guérékata, G. M., Topics in Fractional Differential Equations, (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1273.35001 · doi:10.1007/978-1-4614-4036-9
[4] Wang, J.; Fečkan, M.; Zhou, Y., A survey on impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 19, 4, 806-831, (2016) · Zbl 1344.35169 · doi:10.1515/fca-2016-0044
[5] Wang, J.; Zhou, Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, 74, 17, 5929-5942, (2011) · Zbl 1223.93059 · doi:10.1016/j.na.2011.05.059
[6] Agarwal, R.; O’Regan, D.; Hristova, S., Stability of Caputo fractional differential equations by Lyapunov functions, Applications of Mathematics, 60, 6, 653-676, (2015) · Zbl 1374.34005 · doi:10.1007/s10492-015-0116-4
[7] Wang, Q.; Lu, D.; Fang, Y., Stability analysis of impulsive fractional differential systems with delay, Applied Mathematics Letters. An International Journal of Rapid Publication, 40, 1-6, (2015) · Zbl 1319.34137 · doi:10.1016/j.aml.2014.08.017
[8] Stamova, I.; Stamov, G., Stability analysis of impulsive functional systems of fractional order, Communications in Nonlinear Science and Numerical Simulation, 19, 3, 702-709, (2014) · Zbl 1470.34202 · doi:10.1016/j.cnsns.2013.07.005
[9] Wang, J.; Zhang, Y., On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Applied Mathematics Letters. An International Journal of Rapid Publication, 39, 85-90, (2015) · Zbl 1319.34017 · doi:10.1016/j.aml.2014.08.015
[10] Wang, J.; Ibrahim, A. G.; Fečkan, M., Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Applied Mathematics and Computation, 257, 103-118, (2015) · Zbl 1338.34027 · doi:10.1016/j.amc.2014.04.093
[11] Li, M.; Wang, J., Finite time stability of fractional delay differential equations, Applied Mathematics Letters. An International Journal of Rapid Publication, 64, 170-176, (2017) · Zbl 1354.34130 · doi:10.1016/j.aml.2016.09.004
[12] Wang, J.; Fečkan, M.; Zhou, Y., Center stable manifold for planar fractional damped equations, Applied Mathematics and Computation, 296, 257-269, (2017) · Zbl 1411.34021 · doi:10.1016/j.amc.2016.10.014
[13] Wang, J.; Fečkan, M.; Zhou, Y., Fractional Order Differential Switched Systems with Coupled Nonlocal Initial and Impulsive Conditions, Bulletin des Sciences Mathématiques, (2017) · Zbl 1387.34012 · doi:10.1016/j.bulsci.2017.07.007
[14] Abbas, S.; Benchohra, M.; Rivero, M.; Trujillo, J. ., Existence and stability results for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations, Applied Mathematics and Computation, 247, 319-328, (2014) · Zbl 1338.45004 · doi:10.1016/j.amc.2014.09.023
[15] Wang, J.; Fečkan, M.; Zhou, Y., Ulam’s type stability of impulsive ordinary differential equations, Journal of Mathematical Analysis and Applications, 395, 1, 258-264, (2012) · Zbl 1254.34022 · doi:10.1016/j.jmaa.2012.05.040
[16] Tang, S.; Zada, A.; Faisal, S.; El-Sheikh, M. M.; Li, T., Stability of higher-order nonlinear impulsive differential equations, Journal of Nonlinear Science and its Applications. JNSA, 9, 6, 4713-4721, (2016) · Zbl 1350.34022
[17] Wang, J.; Zhou, Y.; Fečkan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Computers & Mathematics with Applications. An International Journal, 64, 10, 3389-3405, (2012) · Zbl 1268.34033 · doi:10.1016/j.camwa.2012.02.021
[18] Zada, A.; Shah, O.; Shah, R., Hyers-Ulam stability of nonautonomous systems in terms of bounded-ness of Cauchy problems, Applied Mathematics and Computation, 271, 512-518, (2015) · Zbl 1410.39049 · doi:10.1016/j.amc.2015.09.040
[19] Zhou, Y., Attractivity for fractional differential equations in Banach space, Applied Mathematics Letters. An International Journal of Rapid Publication, 75, 1-6, (2018) · Zbl 1380.34025 · doi:10.1016/j.aml.2017.06.008
[20] Zhou, Y.; Ahmad, B.; Alsaedi, A., Existence of nonoscillatory solutions for fractional neutral differential equations, Applied Mathematics Letters, 72, 70-74, (2017) · Zbl 1373.34119 · doi:10.1016/j.aml.2017.04.016
[21] Zhou, Y.; Peng, L., Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Computers & Mathematics with Applications. An International Journal, 73, 6, 1016-1027, (2017) · Zbl 1412.35233 · doi:10.1016/j.camwa.2016.07.007
[22] Zhou, Y.; Peng, L., On the time-fractional Navier-Stokes equations, Computers & Mathematics with Applications. An International Journal, 73, 6, 874-891, (2017) · Zbl 1409.76027 · doi:10.1016/j.camwa.2016.03.026
[23] Zhou, Y.; Vijayakumar, V.; Murugesu, R., Controllability for fractional evolution inclusions without compactness, Evolution Equations and Control Theory, 4, 4, 507-524, (2015) · Zbl 1335.34096 · doi:10.3934/eect.2015.4.507
[24] Zhou, Y.; Zhang, L., Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems, Computers & Mathematics with Applications. An International Journal, 73, 6, 1325-1345, (2017) · Zbl 1409.35232 · doi:10.1016/j.camwa.2016.04.041
[25] Zhou, Y.; Peng, L.; Ahmad, B.; Alsaedi, A., Topological properties of solution sets of fractional stochastic evolution inclusions, Advances in Difference Equations, 90, (2017) · Zbl 1422.34184 · doi:10.1186/s13662-017-1142-1
[26] Yang, X.; Li, C.; Huang, T.; Song, Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Applied Mathematics and Computation, 293, 416-422, (2017) · Zbl 1411.34023 · doi:10.1016/j.amc.2016.08.039
[27] Yang, X.; Li, C.; Song, Q.; Huang, T.; Chen, X., Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks, Neurocomputing, 207, 276-286, (2015) · doi:10.1016/j.neucom.2016.04.045
[28] Wu, A.; Liu, L.; Huang, T.; Zeng, Z., Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments, Neural Networks, 85, 118-127, (2017) · Zbl 1432.34102 · doi:10.1016/j.neunet.2016.10.002
[29] Huang, T.; Li, C.; Duan, S.; Starzyk, J. A., Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects, IEEE Transactions on Neural Networks and Learning Systems, 23, 6, 866-875, (2012) · doi:10.1109/TNNLS.2012.2192135
[30] Uchiyama, M., Formulation of high-speed motion pattern of a mechanical arm by trial, Transactions of the Society of Instrument and Control Engineers, 14, 706-712, (1978) · doi:10.9746/sicetr1965.14.706
[31] Arimoto, S.; Kawamura, S.; Miyazaki, F., Bettering operation of robots by learning, Journal of Robotic Systems, 1, 2, 123-140, (1984) · doi:10.1002/rob.4620010203
[32] Chen, Y.; Wen, C., Iterative learning control. Iterative learning control, Lecture Notes in Control and Information Sciences, 248, (1999), London, UK: Springer-Verlag, London, UK · Zbl 0949.93002 · doi:10.1007/BFb0110114
[33] Norrlof, M., Iterative learning control: Analysis, Design, and Experiments, Linköping Studies, Science and Technology, Dissertations, 653, (2000)
[34] Ahn, H. S.; Chen, Y. Q.; Moore, K. L., Iterative Learning Control, (2007), Berlin, Germany: Springer, Berlin, Germany
[35] Xu, J. X., A survey on iterative learning control for nonlinear systems, International Journal of Control, 84, 7, 1275-1294, (2011) · Zbl 1227.93053 · doi:10.1080/00207179.2011.574236
[36] Ruan, X.; Bien, Z. Z.; Wang, Q., Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm, IET Control Theory and Applications, 6, 5, 707-714, (2012) · doi:10.1049/iet-cta.2010.0388
[37] Liu, S.; Debbouche, A.; Wang, J., On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths, Journal of Computational and Applied Mathematics, 312, 47-57, (2017) · Zbl 1351.65005 · doi:10.1016/j.cam.2015.10.028
[38] Yu, X.; Debbouche, A.; Wang, J., On the iterative learning control of fractional impulsive evolution equations in Banach spaces, Mathematical Methods in the Applied Sciences, (2015) · Zbl 1376.93048 · doi:10.1002/mma.3726
[39] Owens, D. H., Norm Optimal Iterative Learning Control, Iterative Learning Control. Iterative Learning Control, Advances in Industrial Control, 233-276, (2016), London, UK: Springer, London, UK · Zbl 1330.93003 · doi:10.1007/978-1-4471-6772-3_9
[40] Hideg, L. M., Time delays in iterative learning control schemes, Proceedings of the 10th IEEE International Symposium on Intelligent Control
[41] Zhang, B.; Tang, G.; Zheng, S., PD-type iterative learning control for nonlinear time-delay system with external disturbance, Journal of Systems Engineering and Electronics, 17, 3, 600-605, (2006) · Zbl 1302.93112 · doi:10.1016/S1004-4132(06)60103-5
[42] Ma, F.; Li, C.; Huang, T., Iterative learning control design of nonlinear multiple time-delay systems, Applied Mathematics and Computation, 218, 8, 4333-4340, (2011) · Zbl 1239.93042 · doi:10.1016/j.amc.2011.10.008
[43] Rus, I. A., Gronwall lemmas: ten open problems, Scientiae Mathematicae Japonicae, 70, 221-228, (2009) · Zbl 1223.47064
[44] Li, Y.; Ahn, H.-S.; Chen, Y., Iterative learning control of a class of fractional order nonlinear systems, Proceedings of the 2010 IEEE International Symposium on Intelligent Control, ISIC 2010 · doi:10.1109/ISIC.2010.5612935
[45] Zhang, Y.; Wang, J. R., Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems, Journal of Applied Mathematics and Computing, 52, 1-2, 323-343, (2016) · Zbl 1360.34020 · doi:10.1007/s12190-015-0943-1
[46] Wang, J.; Li, X., \(E_\alpha\)-Ulam type stability of fractional order ordinary differential equations, Applied Mathematics and Computation, 45, 1-2, 449-459, (2014) · Zbl 1296.34035 · doi:10.1007/s12190-013-0731-8
[47] Wang, J.; Zhang, Y., Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization. A Journal of Mathematical Programming and Operations Research, 63, 8, 1181-1190, (2014) · Zbl 1296.34034 · doi:10.1080/02331934.2014.906597
[48] Wang, J.; Fečkan, M.; Tian, Y., Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterranean Journal of Mathematics, 14, 2, (2017) · Zbl 1373.34031 · doi:10.1007/s00009-017-0867-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.