×

Derivation of a superelement with deformable interfaces – applied to model flexure joint. (English) Zbl 07797477

Summary: Design and optimization, as well as real time control, of flexure mechanisms require efficient but accurate models. The flexures can be modelled using beam elements and the frame parts can be modelled using superelements. Such a superelement efficiently models arbitrarily shaped bodies by few coordinates, using models obtained by model order reduction. The interfaces between the frame parts and the flexures often experience considerable deformation which affects the stiffness. To define the interface deformation in a reduced order model, this paper derives a multipoint constraint formulation, which relates the nodes on the deformable interface surface of a finite element model to a few coordinates. The multipoint constraints are imposed using a combination of the Lagrange multiplier method and master-slave elimination for efficient model order reduction. The resulting reduced order models are used in the generalized-strain multi-node superelement (GMS) that was defined in [K. Dwarshuis et al., Multibody Syst. Dyn. 56, No. 4, 367–399 (2022; Zbl 1534.70022)]. The interface deformations can be coupled to the cross-sectional deformation of higher order beam elements (i.e. beam elements of which the deformation of the cross-sections is explicitly taken into account).
This paper applies this technique to model flexure joints, where the flexures are modelled with beam elements, and the frame components and critical connections using the GMS. This approach gives generally over 94% accurate stiffness, compared to nonlinear finite element models. The errors were often more than 50% lower than errors of models which only contain beam elements.

MSC:

70E55 Dynamics of multibody systems
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Citations:

Zbl 1534.70022

References:

[1] Dwarshuis, K. S.; Ellenbroek, M. H.M.; Aarts, R. G.K. M.; Brouwer, D. M., A multinode superelement in the generalized strain formulation, Multibody Syst. Dyn., 56, 4, 367-399 (2022) · Zbl 1534.70022 · doi:10.1007/s11044-022-09850-z
[2] Jonker, J. B.; Meijaard, J. P., A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems, Int. J. Non-Linear Mech., 53, 63-74 (2013) · doi:10.1016/j.ijnonlinmec.2013.01.012
[3] Nijenhuis, M.; Meijaard, J. P.; Mariappan, D.; Herder, J. L.; Brouwer, D. M.; Awtar, S., An analytical formulation for the lateral support stiffness of a spatial flexure strip, J. Mech. Des., 139, 5 (2017) · doi:10.1115/1.4035861
[4] Besseling, J. F., Non-linear analysis of structures by the finite element method as a supplement to a linear analysis, Comput. Methods Appl. Mech. Eng., 3, 2, 173-194 (1974) · Zbl 0277.73066 · doi:10.1016/0045-7825(74)90024-3
[5] Seshu, P., Substructuring and component mode synthesis, Shock Vib., 4, 3, 199-210 (1997) · doi:10.3233/SAV-1997-4306
[6] de Klerk, D.; Rixen, D. J.; Voormeeren, S. N., General framework for dynamic substructuring: history, review and classification of techniques, AIAA J., 46, 5, 1169-1181 (2008) · doi:10.2514/1.33274
[7] Allen, M. S.; Rixen, D.; Van der Seijs, M.; Tiso, P.; Abrahamsson, T.; Mayes, R. L., Substructuring in Engineering Dynamics (2020), Cham: Springer, Cham · doi:10.1007/978-3-030-25532-9
[8] Hurty, W. C., Dynamic analysis of structural systems using component modes, AIAA J., 3, 4, 678-685 (1965) · doi:10.2514/3.2947
[9] Craig, R.; Bampton, M., Coupling of substructures for dynamic analyses, AIAA J., 6, 7, 1313-1319 (1968) · Zbl 0159.56202 · doi:10.2514/3.4741
[10] Carassale, L.; Maurici, M., Interface reduction in Craig-Bampton component mode synthesis by orthogonal polynomial series, J. Eng. Gas Turbines Power, 140, 5 (2018) · doi:10.1115/1.4038154
[11] Krattiger, D.; Wu, L.; Zacharczuk, M.; Buck, M.; Kuether, R. J.; Allen, M. S.; Tiso, P.; Brake, M. R.W., Interface reduction for Hurty/Craig-Bampton substructured models: review and improvements, Mech. Syst. Signal Process., 114, 579-603 (2019) · doi:10.1016/j.ymssp.2018.05.031
[12] Castanier, M. P.; Tan, Y.-C.; Pierre, C., Characteristic constraint modes for component mode synthesis, AIAA J., 39, 6, 1182-1187 (2001) · doi:10.2514/2.1433
[13] Wu, L.; Tiso, P.; Van Keulen, F., Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis, AIAA J., 56, 5, 2030-2044 (2018) · doi:10.2514/1.J056196
[14] Hong, S.-K.; Epureanu, B. I.; Castanier, M. P., Next-generation parametric reduced-order models, Mech. Syst. Signal Process., 37, 1-2, 403-421 (2013) · doi:10.1016/j.ymssp.2012.12.012
[15] Babuska, I.; Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9, 1, 373-406 (2011) · Zbl 1229.65195 · doi:10.1137/100791051
[16] Smetana, K.; Patera, A. T., Optimal local approximation spaces for component-based static condensation procedures, SIAM J. Sci. Comput., 38, 5, A3318-A3356 (2016) · Zbl 1457.65216 · doi:10.1137/15M1009603
[17] Battiato, G.; Firrone, C. M.; Berruti, T. M.; Epureanu, B. I., Reduction and coupling of substructures via Gram-Schmidt interface modes, Comput. Methods Appl. Mech. Eng., 336, 187-212 (2018) · Zbl 1440.65080 · doi:10.1016/j.cma.2018.03.001
[18] Ohayon, R.; Soize, C.; Sampaio, R., Variational-based reduced-order model in dynamic substructuring of coupled structures through a dissipative physical interface: recent advances, Arch. Comput. Methods Eng., 21, 3, 321-329 (2014) · Zbl 1348.74075 · doi:10.1007/s11831-014-9107-y
[19] Hughes, P. J.; Kuether, R. J., Nonlinear interface reduction for time-domain analysis of Hurty/Craig-Bampton superelements with frictional contact, J. Sound Vib., 507 (2021) · doi:10.1016/j.jsv.2021.116154
[20] Lindberg, E.; Hörlin, N.-E.; Göransson, P., Component mode synthesis using undeformed interface coupling modes to connect soft and stiff substructures, Shock Vib., 20, 1, 157-170 (2013) · doi:10.1155/2013/262354
[21] Cammarata, A.; Sinatra, R.; Maddìo, P. D., Interface reduction in flexible multibody systems using the floating frame of reference formulation, J. Sound Vib., 523 (2022) · doi:10.1016/j.jsv.2021.116720
[22] Holzwarth, P.; Eberhard, P., Interface reduction for CMS methods and alternative model order reduction, IFAC-PapersOnLine, 48, 1, 254-259 (2015) · doi:10.1016/j.ifacol.2015.05.005
[23] Boer, S. E.; Aarts, R. G.K. M.; Meijaard, J. P.; Brouwer, D. M.; Jonker, J. B., A nonlinear two-node superelement with deformable-interface surfaces for use in flexible multibody systems, Multibody Syst. Dyn., 34, 1, 53-79 (2015) · Zbl 1321.70006 · doi:10.1007/s11044-014-9414-y
[24] Heirman, G. H.K.; Desmet, W., Interface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamics, Multibody Syst. Dyn., 24, 2, 219-234 (2010) · Zbl 1376.70010 · doi:10.1007/s11044-010-9198-7
[25] Law, M.; Phani, A. S.; Altintas, Y., Position-dependent multibody dynamic modeling of machine tools based on improved reduced order models, J. Manuf. Sci. Eng., 135, 2 (2013) · doi:10.1115/1.4023453
[26] Luo, H.; Wang, H.; Zhang, J.; Li, Q., Rapid evaluation for position-dependent dynamics of a 3-DOF PKM module, Adv. Mech. Eng., 6 (2014) · doi:10.1155/2014/238928
[27] Ahn, J. G.; Yang, H. I.; Kim, J. G., Multipoint constraints with Lagrange multiplier for system dynamics and its reduced-order modeling, AIAA J., 58, 1, 385-401 (2020) · doi:10.2514/1.J058118
[28] Ahn, J. G.; Kim, J. G.; Yang, H. I., Interpolation multipoint constraints with selection criteria of degree of freedoms for flexible multibody dynamics, Appl. Math. Comput., 409 (2021) · Zbl 1510.70016 · doi:10.1016/j.amc.2021.126361
[29] Bill, C.: User reference manual for the MYSTRAN General Purpose Finite Element Structural Analysis Computer Program, Appendix E: derivation of the RBE3 element constraint equations (2011 June 16, 2022). https://usermanual.wiki/Document/MYSTRANUsersManual.2014213495/view
[30] Szabó, B.; Babuška, I., Finite Element Analysis: Method, Verification and Validation (2021), Hoboken: Wiley, Hoboken · Zbl 1465.74001 · doi:10.1002/9781119426479
[31] Ie, C. A.; Kosmatka, J. B., On the analysis of prismatic beams using first-order warping functions, Int. J. Solids Struct., 29, 7, 879-891 (1992) · Zbl 0825.73284 · doi:10.1016/0020-7683(92)90023-M
[32] El Fatmi, R., Non-uniform warping including the effects of torsion and shear forces. Part I: a general beam theory, Int. J. Solids Struct., 44, 18-19, 5912-5929 (2007) · Zbl 1186.74067 · doi:10.1016/j.ijsolstr.2007.02.006
[33] El Fatmi, R.; Ghazouani, N., Higher order composite beam theory built on Saint-Venant’s solution. Part I: theoretical developments, Compos. Struct., 93, 2, 557-566 (2011) · doi:10.1016/j.compstruct.2010.08.024
[34] Carrera, E.; Pagani, A.; Petrolo, M.; Zappino, E., Recent developments on refined theories for beams with applications, Mech. Eng. Rev., 2, 2 (2015) · doi:10.1299/mer.14-00298
[35] Vlasov, V. Z., Thin-Walled Elastic Beams (1961), Jerusalem: Israel Program for Scientific Translations, Jerusalem
[36] Simo, J. C.; Vu-Quoc, L., A geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., 27, 3, 371-393 (1991) · Zbl 0731.73029 · doi:10.1016/0020-7683(91)90089-X
[37] Hsiao, K. M.; Lin, W. Y., A co-rotational formulation for thin-walled beams with monosymmetric open section, Comput. Methods Appl. Mech. Eng., 190, 8-10, 1163-1185 (2000) · Zbl 1010.74064 · doi:10.1016/S0045-7825(99)00471-5
[38] Jonker, J. B., Three-dimensional beam element for pre- and post-buckling analysis of thin-walled beams in multibody systems, Multibody Syst. Dyn., 52, 1, 59-93 (2021) · Zbl 1478.74081 · doi:10.1007/s11044-021-09777-x
[39] Kreja, I.; Mikulski, T.; Szymczak, C., Application of superelements in static analysis of thin-walled structures, J. Civ. Eng. Manag., 10, 2, 113-122 (2004) · doi:10.1080/13923730.2004.9636295
[40] Szymczak, C.; Kreja, I.; Mikulski, T.; Kujawa, M., Sensitivity Analysis of Beams and Frames Made of Thin-Walled Members (2003), Gdansk: Gdansk University of Technology Publishers, Gdansk
[41] Mundo, D.; Hadjit, R.; Donders, S.; Brughmans, M.; Mas, P.; Desmet, W., Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process, Finite Elem. Anal. Des., 45, 6-7, 456-462 (2009) · doi:10.1016/j.finel.2008.12.003
[42] Nguyen, N.-L.; Jang, G.-W.; Choi, S.; Kim, J.; Kim, Y. Y., Analysis of thin-walled beam-shell structures for concept modeling based on higher-order beam theory, Comput. Struct., 195, 16-33 (2018) · doi:10.1016/j.compstruc.2017.09.009
[43] Brecher, C.; Fey, M.; Tenbrock, C.; Daniels, M., Multipoint constraints for modeling of machine tool dynamics, J. Manuf. Sci. Eng., 138, 5 (2016) · doi:10.1115/1.4031771
[44] Jonker, J.B.: A finite element dynamic analysis of flexible spatial mechanisms and manipulators. Delft University of Technology (1988)
[45] Jonker, J. B., A finite element dynamic analysis of spatial mechanisms with flexible links, Comput. Methods Appl. Mech. Eng., 76, 1, 17-40 (1989) · Zbl 0687.73066 · doi:10.1016/0045-7825(89)90139-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.