×

Stability and Hopf bifurcation in the general Langford system. (English) Zbl 1519.35021

Summary: This paper is concerned with the general Langford system under homogeneous Neumann boundary conditions. The stabilities of constant solutions are discussed for the general Langford ODE and PDE systems, respectively. Based on the stability results, for the Langford ODE system, the existence, bifurcation direction and stability of periodic solutions are established. Then for the Langford PDE system, by the center manifold theory and the normal form method, the direction of Hopf bifurcation and the stability of spatially homogeneous periodic solutions are investigated. Finally, numerical simulations are shown to support and supplement the results of theoretical analysis.

MSC:

35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
Full Text: DOI

References:

[1] Yi, FQ; Wei, JJ; Shi, JP, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 9, 1038-1051 (2008) · Zbl 1146.35384 · doi:10.1016/j.nonrwa.2007.02.005
[2] Du, LL; Wang, MX, Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 366, 473-485 (2010) · Zbl 1191.35043 · doi:10.1016/j.jmaa.2010.02.002
[3] Merdan, H.; Kayan, S., Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay, Nonlinear Dyn., 79, 1757-1770 (2015) · Zbl 1331.35187 · doi:10.1007/s11071-014-1772-8
[4] Guo, GH; Wu, JH; Ren, XH, Hopf bifurcation in general Brusselator system with diffusion, Appl. Math. Mech. (Engl. Ed.), 32, 1177-1186 (2011) · Zbl 1237.35092 · doi:10.1007/s10483-011-1491-6
[5] Li, Y., Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal. Real World Appl., 28, 32-47 (2016) · Zbl 1329.35053 · doi:10.1016/j.nonrwa.2015.09.004
[6] Li, ZX; Song, YL; Wu, CF, Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux boundary conditions, Nonlinear Dyn., 111, 1, 713-731 (2023) · Zbl 1523.34013 · doi:10.1007/s11071-022-07863-z
[7] Furter, JE; Eilbeck, JC, Analysis of bifurcations in reaction-diffusion systems with no-flux boundary conditions: the Sel’kov model, Proc. R. Soc. Edinb. Sect. A, 125, 413-438 (1995) · Zbl 0830.35011 · doi:10.1017/S0308210500028109
[8] Han, W.; Bao, ZH, Hopf bifurcation analysis of a reaction-diffusion Sel’kov system, J. Math. Anal. Appl., 356, 633-641 (2009) · Zbl 1165.35027 · doi:10.1016/j.jmaa.2009.03.058
[9] Wang, P.; Gao, YB, Turing instability of the periodic solutions for the diffusive Selkov model with saturation effect, Nonlinear Anal. Real World Appl., 63, 103417 (2022) · Zbl 1479.35073 · doi:10.1016/j.nonrwa.2021.103417
[10] Liu, P.; Shi, JP; Wang, YW; Feng, XH, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51, 8, 2001-2019 (2013) · Zbl 1320.92088 · doi:10.1007/s10910-013-0196-x
[11] Saadi, FA; Champneys, A.; Gai, C.; Kolokolnikov, T., Spikes and localised patterns for a novel Schnakenberg model in the semi-strong interaction regime, Eur. J. Appl. Math., 33, 1, 133-152 (2022) · Zbl 1504.35029 · doi:10.1017/S0956792520000431
[12] Wang, JF; Wei, JJ; Shi, JP, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differ. Equ., 260, 4, 3495-3523 (2016) · Zbl 1332.35176 · doi:10.1016/j.jde.2015.10.036
[13] Terry, AJ, Predator-prey models with component Allee effect for predator reproduction, J. Math. Biol., 71, 1325-1352 (2015) · Zbl 1330.34078 · doi:10.1007/s00285-015-0856-5
[14] Li, XS; Pang, DF; Wallhead, P.; Bellerby, RGJ, Dynamics of an aquatic diffusive predator-prey model with double Allee effect and pH-dependent capture rate, Chaos Solitons Fractals, 169 (2023) · doi:10.1016/j.chaos.2023.113234
[15] Yi, FQ; Wei, JJ; Shi, JP, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 246, 1944-1977 (2009) · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[16] Wang, MX, Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion, Math. Biosci., 212, 2, 149-160 (2008) · Zbl 1138.92034 · doi:10.1016/j.mbs.2007.08.008
[17] Zhang, JF; Li, WT; Yan, XP, Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models, Appl. Math. Comput., 218, 5, 1883-1893 (2011) · Zbl 1228.92082
[18] Guo, GH; Li, BF; Lin, XL, Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models, Comput. Math. Appl., 67, 1, 151-163 (2014) · Zbl 1353.35292 · doi:10.1016/j.camwa.2013.08.014
[19] Yi, FQ; Liu, JX; Wei, JJ, Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model, Nonlinear Anal. Real World Appl., 11, 5, 3770-3781 (2010) · Zbl 1203.35037 · doi:10.1016/j.nonrwa.2010.02.007
[20] Wei, MH; He, YN; Azam, M., Spatiotemporal patterns and bifurcations with degeneration in a symmetry glycolysis model, Commun. Nonlinear Sci. Numer. Simul., 114 (2022) · Zbl 1495.35026 · doi:10.1016/j.cnsns.2022.106644
[21] Yang, RZ; Nie, CX; Jin, D., Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity, Nonlinear Dyn., 110, 1, 879-900 (2022) · doi:10.1007/s11071-022-07625-x
[22] Yang, RZ; Wang, FT; Jin, D., Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food, Math. Methods Appl. Sci., 45, 16, 9967-9978 (2022) · Zbl 07781413 · doi:10.1002/mma.8349
[23] Hopf, E., A mathematical example displaying features of turbulence, Commun. Pure Appl. Math., 1, 303-322 (1948) · Zbl 0031.32901 · doi:10.1002/cpa.3160010401
[24] Hassard, BD; Kazarinoff, ND; Wan, YH, Theory and Application of Hopf Bifurcation (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
[25] Nikolov, S.; Bozhkov, B., Bifurcations and chaotic behavior on the Lanford system, Chaos Solitons Fractals, 21, 803-808 (2004) · Zbl 1051.37015 · doi:10.1016/j.chaos.2003.12.040
[26] Krishchenko, AP; Starkov, KE, Localization of compact invariant sets of nonlinear systems with applications to the Lanford system, Int. J. Bifurc. Chaos, 16, 11, 3249-3256 (2006) · Zbl 1126.34347 · doi:10.1142/S0218127406016768
[27] Nikolov, SG; Vassilev, VM, Completely integrable dynamical systems of Hopf-Langford type, Commun. Nonlinear Sci. Numer. Simul., 92 (2021) · Zbl 1454.37056 · doi:10.1016/j.cnsns.2020.105464
[28] Nikolov, SG; Vassilev, VM, Assessing the non-linear dynamics of a Hopf-Langford type system, Mathematics, 9, 18, 2340 (2021) · doi:10.3390/math9182340
[29] Guo, GH; Wang, XN; Lin, XL; Wei, MH, Steady-state and Hopf bifurcations in the Langford ODE and PDE systems, Nonlinear Anal. Real World Appl., 34, 343-362 (2017) · Zbl 1368.35029 · doi:10.1016/j.nonrwa.2016.09.008
[30] Liu, SH; Tang, JS; Qin, JQ; Yin, XB, Bifurcation analysis and control of periodic solutions changing into invariant tori in Langford system, Chin. Phys. B, 17, 5, 1691-1697 (2008) · doi:10.1088/1674-1056/17/5/026
[31] Cui, Y.; Liu, SH; Tang, JS; Meng, YM, Amplitude control of limit cycles in Langford system, Chaos Solitons Fractals, 42, 335-340 (2009) · Zbl 1198.93146 · doi:10.1016/j.chaos.2008.12.005
[32] Yang, QG; Yang, T., Complex dynamics in a generalized Langford system, Nonlinear Dyn., 91, 2241-2270 (2018) · Zbl 1392.37034 · doi:10.1007/s11071-017-4012-1
[33] Bashkirtseva, I.; Ryashko, L., Stochastic bifurcations, chaos and phantom attractors in the Langford system with tori, Int. J. Bifurc. Chaos, 30, 16, 2030051 (2020) · Zbl 1460.37050 · doi:10.1142/S0218127420300517
[34] Fu, YG; Li, JB, Bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf-Langford system, Nonlinear Dyn., 106, 2097-2105 (2021) · doi:10.1007/s11071-021-06839-9
[35] Musafirov, E.; Grin, A.; Pranevich, A., Admissible perturbations of a generalized Langford system, Int. J. Bifurc. Chaos, 32, 3, 2250038 (2022) · Zbl 1500.34032 · doi:10.1142/S0218127422500389
[36] Hassard, BD; Kazarinoff, ND; Wan, YH, Theory and Applications of Hopf Bifurcation (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.