×

Stochastic bifurcations, chaos and phantom attractors in the Langford system with tori. (English) Zbl 1460.37050

Summary: The variability of stochastic dynamics for a three-dimensional dynamic model in a parametric zone with 2-tori is investigated. It is shown how weak Gaussian noise transforms deterministic quasiperiodic oscillations into noisy bursting. The phenomenon of stochastic generation of a phantom attractor and its shift with noise amplification is revealed. This phenomenon, accompanied by order-chaos transitions, is studied in terms of stochastic \(P\)- and \(D\)-bifurcations.

MSC:

37H20 Bifurcation theory for random and stochastic dynamical systems
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Alexandrov, D., Bashkirtseva, I. & Ryashko, L. [2019] “ Anomalous stochastic dynamics induced by the slip-stick friction and leading to phantom attractors,” Physica D399, 153-158. · Zbl 1453.60107
[2] Arnold, V. I. [1988] Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin). · Zbl 0648.34002
[3] Arnold, L. [1998] Random Dynamical Systems (Springer-Verlag, Berlin). · Zbl 0906.34001
[4] Bashkirtseva, I. & Ryashko, L. [2016a] “ How additive noise generates a phantom attractor in a model with cubic nonlinearity,” Phys. Lett. A380, 3359-3365.
[5] Bashkirtseva, I. & Ryashko, L. [2016b] “ Sensitivity analysis of stochastically forced quasiperiodic self-oscillations,” Electron. J. Diff. Eqs.2016, 1-12. · Zbl 1353.34052
[6] Bashkirtseva, I., Ryashko, L. & Slepukhina, E. [2018] “ Stochastic generation and deformation of toroidal oscillations in neuron model,” Int. J. Bifurcation and Chaos28, 1850070-1-14. · Zbl 1394.34089
[7] Bashkirtseva, I., Zaitseva, S. & Pisarchik, A. [2019] “ Noise-induced phantom attractor in the enzyme kinetics,” AIP Conf. Proc.2164, 060003.
[8] Bazykin, A. D. [1998] Nonlinear Dynamics of Interacting Populations (World Scientific).
[9] Benes, G. N., Barry, A. M., Kaper, T. J., Kramer, M. A. & Burke, J. [2011] “ An elementary model of torus canards,” Chaos21, 023131. · Zbl 1317.34098
[10] Bohr, T., Jensen, M. H., Paladin, G. & Vulpiani, A. [1998] Dynamical Systems Approach to Turbulence (Cambridge University Press, Cambridge). · Zbl 0933.76002
[11] Burke, J., Desroches, M., Barry, A. M., Kaper, T. J. & Kramer, M. A. [2012] “ A showcase of torus canards in neuronal bursters,” J. Math. Neurosci.2, 1-30. · Zbl 1291.92025
[12] Chen, G. & Dong, X. [1998] From Chaos to Order: Methodologies, Perspectives, and Applications (World Scientific). · Zbl 0908.93005
[13] Dolgopyat, D., Freidlin, M. & Koralov, L. [2012] “ Deterministic and stochastic perturbations of area preserving flows on a two-dimensional torus,” Erg. Th. Dyn. Syst.32, 899-918. · Zbl 1330.34096
[14] Epstein, I. R. & Pojman, J. A. [1998] An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, USA).
[15] Goldbeter, A. [1996] Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behavior (Cambridge University Press, Cambridge). · Zbl 0837.92009
[16] Gollub, J. P. & Benson, S. V. [1980] “ Many routes to turbulent convection,” J. Fluid Mech.100, 449-470.
[17] Gorban, A. N. & Karlin, I. V. [2005] Invariant Manifolds for Physical and Chemical Kinetics (Springer, Berlin, Heidelberg). · Zbl 1086.82009
[18] Guckenheimer, J. & Holmes, P. J. [1983] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer). · Zbl 0515.34001
[19] Harlim, J. & Langford, W. F. [2007] “ The cusp-Hopf bifurcation,” Int. J. Bifurcation and Chaos17, 2547-2570. · Zbl 1141.37344
[20] Ju, H., Neiman, A. B. & Shilnikov, A. L. [2018] “ Bottom-up approach to torus bifurcation in neuron models,” Chaos28, 106317. · Zbl 1466.92022
[21] Kaneko, K. [1986] Collapse of Tori and Genesis of Chaos in Dissipative Systems (World Scientific, Singapore). · Zbl 0647.58032
[22] Katok, A. & Hasselblatt, B. [1997] Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge). · Zbl 0878.58019
[23] Kramer, M. A., Traub, R. D. & Kopell, N. J. [2008] “ New dynamics in cerebellar Purkinje cells: Torus canards,” Phys. Rev. Lett.101, 068103.
[24] Kuznetsov, S. [2005] “ Effect of noise on the dynamics at the torus-doubling terminal point in a quadratic map under quasiperiodic driving,” Phys. Rev. E72, 026205.
[25] Langford, W. F. [2007] “ Numerical studies of torus bifurcations,” Numerical Methods for Bifurcation Problems, , Vol. 70, eds. Küpper, T., Mittelmann, H. D. & Weber, H. (Birkhäuser, Basel), pp. 285-295.
[26] Ruelle, D. [1981] “ Chemical kinetics and differentiable dynamical systems,” Nonlinear Phenomena in Chemical Dynamics, eds. Vidal, C. & Pacault, A. (Springer, Berlin, Heidelberg), pp. 30-37.
[27] Ryashko, L. & Slepukhina, E. [2017] “ Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model,” Phys. Rev. E96, 032212.
[28] Samoilenko, A. M. [1991] Elements of the Mathematical Theory of Multi-Frequency Oscillations (Kluwer, Dordrecht). · Zbl 0732.34043
[29] Schuster, P. [2016] Stochasticity in Processes: Fundamentals and Applications to Chemistry and Biology (Springer, Berlin). · Zbl 1359.60006
[30] Semenov, V. V., Neiman, A. B., Vadivasova, T. E. & Anishchenko, V. S. [2016] “ Noise-induced transitions in a double-well oscillator with nonlinear dissipation,” Phys. Rev. E93, 052210.
[31] Stollenwerk, N., Sommer, P. F., Kooi, B., Mateus, L., Ghaffari, P. & Aguiar, M. [2017] “ Hopf and torus bifurcations, torus destruction and chaos in population biology,” Ecol. Compl.30, 91-99.
[32] Strogatz, S. H. [2015] Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Westview Press). · Zbl 1343.37001
[33] Vidal, C., Roux, J.-C., Bachelart, S. & Rossi, A. [1980] “ Experimental study of the transition to turbulence in the Belousov-Zhabotinsky reaction,” Ann. N. Y. Acad. Sci.357, 377-396.
[34] Vo, T. [2017] “ Generic torus canards,” Physica D356-357, 37-64. · Zbl 1378.34080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.