×

Nonlinear dynamics of discontinuous uncertain oscillators with unilateral constraints. (English) Zbl 07880306


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Lancioni, G.; Lenci, S.; Galvanetto, U., Non-linear dynamics of a mechanical system with a frictional unilateral constraint, Int. J. Non Linear Mech., 44, 6, 658-674, 2009 · doi:10.1016/j.ijnonlinmec.2009.02.012
[2] Leine, R. I.; Van de Wouw, N., Stability and Convergence of Mechanical Systems with Unilateral Constraints, 2007, Springer
[3] Tametang Meli, M. I.; Leutcho, G. D.; Yemele, D., Multistability analysis and nonlinear vibration for generator set in series hybrid electric vehicle through electromechanical coupling, Chaos, 31, 7, 073126, 2021 · Zbl 1471.74030 · doi:10.1063/5.0057761
[4] Theurich, T.; Gross, J.; Krack, M., Effects of modal energy scattering and friction on the resonance mitigation with an impact absorber, J. Sound Vib., 442, 71-89, 2019 · doi:10.1016/j.jsv.2018.10.055
[5] Luo, A. C. J.; Guo, Y., Vibro-Impact Dynamics, 2012, John Wiley & Sons
[6] Liu, Y.; Wiercigroch, M.; Pavlovskaia, E.; Yu, H. N., Modelling of a vibro-impact capsule system, Int. J. Mech. Sci., 66, 2-11, 2013 · doi:10.1016/j.ijmecsci.2012.09.012
[7] Gzal, M.; Fang, B.; Vakakis, A. F.; Bergman, L. A.; Gendelman, O. V., Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity, Nonlinear Dyn., 101, 4, 2087-2106, 2020 · Zbl 1517.74037 · doi:10.1007/s11071-020-05909-8
[8] Kumar, P.; Narayanan, S., Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators, Nonlinear Dyn., 102, 2, 927-950, 2020 · doi:10.1007/s11071-020-05960-5
[9] Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A., Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam, Chaos, 28, 5, 053102, 2018 · doi:10.1063/1.5022854
[10] Warminski, J.; Lenci, S.; Cartmell, M. P.; Rega, G.; Wiercigroch, M., Nonlinear Dynamic Phenomena in Mechanics, 2011, Springer
[11] Borowiec, M.; Litak, G.; Lenci, S., Noise effected energy harvesting in a beam with stopper, Int. J. Struct. Stab. Dyn., 14, 8, 1440020, 2014 · doi:10.1142/S0219455414400203
[12] Bhattiprolu, U.; Bajaj, A. K.; Davies, P., Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method, Int. J. Solids Struct., 99, 28-39, 2016 · doi:10.1016/j.ijsolstr.2016.08.009
[13] Blankenship, G. W.; Kahraman, A., Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity, J. Sound Vib., 185, 5, 743-765, 1995 · Zbl 0982.70515 · doi:10.1006/jsvi.1995.0416
[14] Dou, S. G.; Jensen, J. S., Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes, Comput. Struct., 164, 63-74, 2016 · doi:10.1016/j.compstruc.2015.11.001
[15] Farshidianfar, A.; Saghafi, A., Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems, Nonlinear Dyn., 75, 4, 783-806, 2014 · doi:10.1007/s11071-013-1104-4
[16] Kim, T. C.; Rook, T. E.; Singh, R., Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity, J. Sound Vib., 263, 3, 665-678, 2003 · Zbl 1237.70108 · doi:10.1016/S0022-460X(02)01469-4
[17] Stefani, G.; De Angelis, M.; Andreaus, U., Numerical study on the response scenarios in a vibro-impact single-degree-of-freedom oscillator with two unilateral dissipative and deformable constraints, Commun. Nonlinear Sci. Numer. Simul., 99, 105818, 2021 · Zbl 07348076 · doi:10.1016/j.cnsns.2021.105818
[18] Kim, Y. B.; Noah, S. T., Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: A general approach, J. Appl. Mech., 58, 2, 545-553, 1991 · Zbl 0850.70235 · doi:10.1115/1.2897218
[19] Crisfield, M. A., An arc-length method including line searches and accelerations, Int. J. Numer. Methods Eng., 19, 9, 1269-1289, 1983 · Zbl 0516.73084 · doi:10.1002/nme.1620190902
[20] Didier, J.; Sinou, J. J.; Faverjon, B., Nonlinear vibrations of a mechanical system with non-regular nonlinearities and uncertainties, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 3250-3270, 2013 · Zbl 1329.70058 · doi:10.1016/j.cnsns.2013.03.005
[21] Berthold, C.; Gross, J.; Frey, C.; Krack, M., Development of a fully-coupled harmonic balance method and a refined energy method for the computation of flutter-induced limit cycle oscillations of bladed disks with nonlinear friction contacts, J. Fluids Struct., 102, 103233, 2021 · doi:10.1016/j.jfluidstructs.2021.103233
[22] Alcorta, R.; Baguet, S.; Prabel, B.; Piteau, P.; Jacquet-Richardet, G., Period doubling bifurcation analysis and isolated sub-harmonic resonances in an oscillator with asymmetric clearances, Nonlinear Dyn., 98, 4, 2939-2960, 2019 · Zbl 1430.37098 · doi:10.1007/s11071-019-05245-6
[23] Luo, A. C. J.; Huang, J. Z., Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, J. Vib. Control, 18, 11, 1661-1674, 2012 · doi:10.1177/1077546311421053
[24] Petrov, E. P., A method for parametric analysis of stability boundaries for nonlinear periodic vibrations of structures with contact interfaces, J. Eng. Gas Turbines Power, 141, 3, 031023, 2019 · doi:10.1115/1.4040850
[25] Krack, M.; Gross, J., Harmonic Balance for Nonlinear Vibration Problems, 2019, Springer · Zbl 1416.70003
[26] Sundararajan, P.; Noah, S. T., Dynamics of forced nonlinear systems using shooting/arc-length continuation method—application to rotor systems, J. Vib. Acoust., 119, 1, 9-20, 1997 · doi:10.1115/1.2889694
[27] Demailly, D.; Thouverez, F.; Jézéquel, L.; Bonini, J., 3219-3225, 2001
[28] Fu, C.; Xu, Y. D.; Yang, Y. F.; Lu, K.; Gu, F. S.; Ball, A., Response analysis of an accelerating unbalanced rotating system with both random and interval variables, J. Sound Vib., 466, 115047, 2020 · doi:10.1016/j.jsv.2019.115047
[29] Sun, Y.; Yuan, J.; Pesaresi, L.; Denimal, E.; Salles, L., Parametric study and uncertainty quantification of the nonlinear modal properties of frictional dampers, J. Vib. Acoust., 142, 5, 051102, 2020 · doi:10.1115/1.4046953
[30] Fu, C.; Sinou, J. J.; Zhu, W. D.; Lu, K.; Yang, Y. F., A state-of-the-art review on uncertainty analysis of rotor systems, Mech. Syst. Signal Process., 183, 109619, 2023 · doi:10.1016/j.ymssp.2022.109619
[31] Moukam Kakmeni, F. M.; Bowong, S.; Senthikumar, D. V.; Kurths, J., Practical time-delay synchronization of a periodically modulated self-excited oscillators with uncertainties, Chaos, 20, 4, 043121, 2010 · Zbl 1311.34074 · doi:10.1063/1.3515840
[32] Roncen, T.; Sinou, J. J.; Lambelin, J. P., Non-linear vibrations of a beam with non-ideal boundary conditions and uncertainties – modeling, numerical simulations and experiments, Mech. Syst. Signal Process., 110, 165-179, 2018 · doi:10.1016/j.ymssp.2018.03.013
[33] Zheng, Y. Y.; Yang, F.; Duan, J. Q.; Kurths, J., Quantifying model uncertainty for the observed non-Gaussian data by the hellinger distance, Commun. Nonlinear Sci. Numer. Simul., 96, 105720, 2021 · Zbl 1461.62166 · doi:10.1016/j.cnsns.2021.105720
[34] Fu, C.; Zhu, W. D.; Yang, Y. F.; Zhao, S. B.; Lu, K., Surrogate modeling for dynamic analysis of an uncertain notched rotor system and roles of Chebyshev parameters, J. Sound Vib., 524, 116755, 2022 · doi:10.1016/j.jsv.2022.116755
[35] Worden, K.; Manson, G.; Lord, T. M.; Friswell, M. I., Some observations on uncertainty propagation through a simple nonlinear system, J. Sound Vib., 288, 3, 601-621, 2005 · doi:10.1016/j.jsv.2005.07.008
[36] Sarrouy, E.; Pagnacco, E.; de Cursi, E. S., A constant phase approach for the frequency response of stochastic linear oscillators, Mech. Ind., 17, 2, 206, 2016 · doi:10.1051/meca/2015057
[37] Panunzio, A. M.; Salles, L.; Schwingshackl, C. W., Uncertainty propagation for nonlinear vibrations: A non-intrusive approach, J. Sound Vib., 389, 309-325, 2017 · doi:10.1016/j.jsv.2016.09.020
[38] Fu, C.; Zhu, W. D.; Zheng, Z. L.; Sun, C. Z.; Yang, Y. F.; Lu, K., Nonlinear responses of a dual-rotor system with rub-impact fault subject to interval uncertain parameters, Mech. Syst. Signal Process., 170, 108827, 2022 · doi:10.1016/j.ymssp.2022.108827
[39] Fu, C.; Zheng, Z. L.; Zhu, W. D.; Lu, K.; Yang, Y. F., Nonlinear vibrations of a rotor with support nonlinearities considering bounded uncertainties, Nonlinear Dyn., 2022 · doi:10.1007/s11071-022-07724-9
[40] Xu, Y. Y.; Luo, A. C. J.; Chen, Z. B., Analytical solutions of periodic motions in 1-dimensional nonlinear systems, Chaos, Solitons Fractals, 97, 1-10, 2017 · Zbl 1380.34066 · doi:10.1016/j.chaos.2017.02.003
[41] Fu, C.; Ren, X. M.; Yang, Y. F.; Lu, K.; Qin, W. Y., Steady-state response analysis of cracked rotors with uncertain-but-bounded parameters using a polynomial surrogate method, Commun. Nonlinear Sci. Numer. Simul., 68, 240-256, 2019 · Zbl 1456.74151 · doi:10.1016/j.cnsns.2018.08.004
[42] Wu, J. L.; Zhang, Y. Q.; Chen, L. P.; Luo, Z., A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37, 6, 4578-4591, 2013 · Zbl 1269.93031 · doi:10.1016/j.apm.2012.09.073
[43] Gastaldi, C.; Berruti, T. M., A method to solve the efficiency-accuracy trade-off of multi-harmonic balance calculation of structures with friction contacts, Int. J. Non Linear Mech., 92, 25-40, 2017 · doi:10.1016/j.ijnonlinmec.2017.03.010
[44] Roncen, T.; Lambelin, J. P.; Sinou, J. J., Nonlinear vibrations of a beam with non-ideal boundary conditions and stochastic excitations - experiments, modeling and simulations, Commun. Nonlinear Sci. Numeri. Simul., 74, 14-29, 2019 · Zbl 1464.74068 · doi:10.1016/j.cnsns.2019.03.006
[45] Kahraman, A.; Blankenship, G. W., Interactions between commensurate parametric and forcing excitations in a system with clearance, J. Sound Vib., 194, 3, 317-336, 1996 · doi:10.1006/jsvi.1996.0361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.