×

Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity. (English) Zbl 1517.74037


MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74M20 Impact in solid mechanics
Full Text: DOI

References:

[1] Housner, GW; Bergman, LA; Caughey, TK; Chassiakos, AG; Claus, RO; Masri, SF; Skelton, RE; Soong, TT; Spencer, BF; Yao, JTP, Structural control: past, present, and future, J. Eng. Mech., 123, 9, 897-971 (1997)
[2] Vakakis, AF; Gendelman, OV; Bergman, LA; McFarland, DM; Kerschen, G.; Lee, YS, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Solid Mechanics and Its Applications (2008), Dordrecht: Springer, Dordrecht · Zbl 1170.70001
[3] Vakakis, AF, Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust., 123, 324-332 (2001)
[4] Watts, P., On a method of reducing the rolling of ships at sea, Trans. INA, 24, 165-191 (1883)
[5] Ormondroyd, J.; Den Hartog, JP, Theory of the dynamic vibration absorber, ASME J. Appl. Mech., 50, 9-22 (1928)
[6] Den Hartog, JP, Mechanical Vibrations (1956), New York: McGraw-Hill Book Co., Inc., New York · Zbl 0071.39304
[7] Thompson, AG, Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system, J. Sound Vib., 77, 3, 403-415 (1981) · Zbl 0477.73086
[8] Soong, TT; Dargush, GF, Passive energy dissipation systems in structural engineering (1997), New York: Wiley, New York
[9] Fischer, O., Wind-excited vibrations—solution by passive dynamic vibration absorbers of different types, J. Wind Eng. Ind. Aerodyn., 95, 9, 1028-1039 (2007)
[10] Soto, MG; Adeli, H., Tuned mass dampers, Arch. Comput. Methods Eng., 20, 4, 419-431 (2013)
[11] Starosvetsky, Y.; Gendelman, OV, Interaction of nonlinear energy sink with a two degrees of freedom linear system: internal resonance, J. Sound Vib., 329, 1836-1852 (2010)
[12] Quinn, DD; Hubbard, S.; Wierschem, N.; Al-Shudeifat, MA; Ott, RJ; Luo, J., Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments, Proc. Inst. Mech. Eng., 226, K2, 122-146 (2012)
[13] Luo, J.; Wierschem, NE; Hubbard, SA; Fahnestock, LA; Quinn, DD; McFarland, DM; Spencer, BF; Vakakis, AF; Bergman, LA, Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation, Eng. Struct., 77, 34-48 (2014)
[14] Luo, J.; Wierschem, NE; Fahnestock, LA; Spencer, BF; Quinn, DD; McFarland, DM; Vakakis, AF; Bergman, LA, Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs, Earthq. Eng. Struct. Dyn., 43, 12, 1829-1851 (2014)
[15] Gendelman, OV; Starosvetsky, Y.; Feldman, M., Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. I: description of response regimes, Nonlinear Dyn., 51, 31-46 (2007) · Zbl 1170.70332
[16] Starosvetsky, Y.; Gendelman, OV, Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber, Nonlinear Dyn., 51, 47-57 (2007) · Zbl 1170.70333
[17] Starosvetsky, Y.; Gendelman, OV, Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning, J. Sound Vib., 315, 746-765 (2008)
[18] Starosvetsky, Y.; Gendelman, OV, Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry, Physica D, 237, 1719-1733 (2008) · Zbl 1342.70059
[19] Starosvetsky, Y.; Gendelman, OV, Vibration absorption in systems with a nonlinear energy sink: nonlinear damping, J. Sound Vib., 324, 916-939 (2009)
[20] Andersen, D.; Starosvetsky, Y.; Vakakis, AF; Bergman, LA, Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping, Nonlinear Dyn., 67, 807-827 (2012)
[21] Taleshi, M.; Dardel, M.; Pashaie, MH, Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber, Chaos Sol. Fract., 92, 56-72 (2016) · Zbl 1372.74036
[22] Qiu, D.; Seguy, S.; Paredes, M., Tuned nonlinear energy sink with conical spring: Design theory and sensitivity analysis, ASME. J. Mech. Des., 140, 1, 011404 (2018)
[23] Qiu, D.; Paredes, M.; Seguy, S., Variable pitch spring for nonlinear energy sink: Application to passive vibration control, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 233, 2, 611-622 (2019)
[24] Vakakis, AF, Shock isolation through the use of nonlinear energy sinks, J. Vib. Control, 9, 1-2, 79-93 (2003) · Zbl 1062.70603
[25] Georgiadis, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Shock isolation through passive energy pumping I: a system with piecewise linear stiffnesses. In: Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, Paper VIB-48490, pp. 1569-1574 (2003)
[26] AL-Shudeifat, MA; Wierschem, N.; Quinn, DD; Vakakis, AF; Bergman, LA; Spencer, BF, Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation, Int. J. Nonlinear Mech., 52, 96-109 (2013)
[27] AL-Shudeifat, MA; Vakakis, AF; Bergman, LA, Shock mitigation by means of low-to high frequency nonlinear targeted energy transfers in a largescale structure, J. Comput. Nonlinear Dyn., 11, 2, 021006 (2016)
[28] Saeed, AS; AL-Shudeifat, MA; Vakakis, AF; Cantwell, WJ, Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations, Arch. Appl. Mech., 90, 495-521 (2020)
[29] Wierschem, NE; Hubbard, SA; Luo, J.; Fahnestock, LA; Spencer, BF; McFarland, DM; Quinn, DD; Vakakis, AF; Bergman, LA, Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers, J. Sound Vib., 389, 52-72 (2017)
[30] Nucera, F.; Vakakis, AF; McFarland, DM; Bergman, LA; Kerschen, G., Targeted energy transfers in vibro-impact oscillators for seismic mitigation, Nonlinear Dyn., 50, 651-677 (2007) · Zbl 1177.70032
[31] Nucera, F.; Iacono, FL; McFarland, DM; Bergman, LA; Vakakis, AF, Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results, J. Sound Vib., 313, 57-76 (2008)
[32] Nucera, F.; McFarland, DM; Bergman, LA; Vakakis, AF, Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results, J. Sound Vib., 329, 2973-2994 (2010)
[33] Lu, X.; Liu, Z.; Lu, Z., Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation, Struct. Control Health Monit., 24, e2033 (2017)
[34] Lee, YS; Vakakis, AF; Bergman, LA; McFarland, DM; Kerschen, G., Suppression of aeroelastic instability using broadband passive targeted energy transfers I: theory, AIAA J., 45, 693-711 (2007)
[35] Gendelman, OV; Vakakis, AF; Bergman, LA; McFarland, DM, Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow, SIAM J. Appl. Math., 70, 1655-1677 (2010) · Zbl 1402.76064
[36] Vaurigaud, B.; Manevitch, LI; Lamarque, CH, Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer, J. Sound Vib., 330, 11, 2580-2595 (2011)
[37] Bichiou, Y.; Hajj, MR; Nayfeh, AH, Effectiveness of a nonlinear energy sink in the control of an aeroelastic system, Nonlinear Dyn., 86, 4, 2161-2177 (2016) · Zbl 1452.70027
[38] Ebrahimzade, N.; Dardel, M.; Shafaghat, R., Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks, AIAA J., 56, 7, 2256-2869 (2018)
[39] Gourdon, E.; Alexander, NA; Taylor, CA; Lamarque, CH; Pernot, S., Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results, J. Sound Vib., 300, 3-5, 522-551 (2007)
[40] Sapsis, TP; Quinn, DD; Vakakis, AF; Bergman, LA, Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments, J. Vib. Acoust., 134, 1, 011016 (2012)
[41] Gendelman, OV; Sapsis, TP; Vakakis, AF; Bergman, LA, Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators, J. SoundVib., 330, 1-8 (2011)
[42] Wierschem, NE; Quinn, DD; Hubbard, SA; Al- Shudeifat, MA; McFarland, DM; Luo, J.; Fahnestock, LA; Spencer, BF; Vakakis, AF; Bergman, LA, Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment, J. Sound Vib., 331, 5393-5407 (2012)
[43] Gendelman, OV, Targeted energy transfer in systems with non-polynomial non-linearity, J. Sound Vib., 315, 732-745 (2008)
[44] Gendelman, OV; Sigalov, G.; Manevitch, LI; Mane, M.; Vakakis, AF; Bergman, LA, Dynamics of an eccentric rotational nonlinear energy sink, J. Appl. Mech., 79, 1, 011012 (2012)
[45] Sigalov, G.; Gendelman, OV; AL-Shudeifat, MA; Manevitch, LI; Vakakis, AF; Bergman, LA, Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink, Nonlinear Dyn., 69, 1693-1704 (2012)
[46] Saeed, AS; AL-Shudeifat, MA; Vakakis, AF, Rotary-oscillatory nonlinear energy sink of robust performance, Int. J. Nonlinear Mech., 117, 103249 (2019)
[47] Manevitch, LI; Sigalov, G.; Romeo, F.; Bergman, LA; Vakakis, AF, Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study, ASME J. Appl. Mech., 81, 4, 041011 (2014)
[48] Sigalov, G.; Bergman, LA; Vakakis, AF, Dynamics of a Linear oscillator coupled to a bistable light attachment: numerical study, ASME J. Comput. Nonlinear Dyn., 10, 1, 011007 (2014)
[49] Romeo, F.; Sigalov, G.; Bergman, LA; Vakakis, AF, Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study, ASME. J. Comput. Nonlinear Dyn., 10, 1, 011007 (2015)
[50] AL-Shudeifat, MA, Highly efficient nonlinear energy sink, Nonlinear Dyn., 76, 1905-1920 (2014) · Zbl 1352.70053
[51] Mattei, PO; Ponçot, R.; Pachebat, M.; Côte, R., Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment, J. Sound Vib., 373, 29-51 (2016)
[52] Fang, X.; Wen, J.; Yin, J.; Yu, D., Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping, Nonlinear Dyn., 87, 4, 2677-2695 (2017)
[53] Habib, G.; Romeo, F., The tuned bistable nonlinear energy sink, Nonlinear Dyn., 89, 1, 179-196 (2017)
[54] Qiu, D.; Li, T.; Seguy, S.; Paredes, M., Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design, Nonlinear Dyn., 92, 2, 443-461 (2018)
[55] Lamarque, CH; Gendelman, OV; Savadkoohi, AT; Etcheverria, E., Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink, Acta Mech., 221, 1-2, 175 (2011) · Zbl 1303.70022
[56] Karayannis, I.; Vakakis, AF; Georgiades, F., Vibro-impact attachments as shock absorbers, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 222, 1899-1908 (2008)
[57] Lee, YS; Nucera, F.; Vakakis, AF; McFarland, DM; Bergman, LA, Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments, Phys. Nonlinear Phenom., 238, 1868-1896 (2009) · Zbl 1179.37032
[58] Gourc, E.; Michon, G.; Seguy, S.; Berlioz, A., Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments, J. Vib. Acoust., 137, 031008 (2015)
[59] Gourc, E.; Seguy, S.; Michon, G.; Berlioz, A.; Mann, BP, Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink, J. Sound Vib., 355, 392-406 (2015)
[60] Gendelman, OV; Alloni, A., Dynamics of forced system with vibro-impact energy sink, J. Sound Vib., 358, 301-314 (2015)
[61] Wang, J.; Wierschem, N.; Spencer, BF; Lu, X., Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink, Earthq. Eng. Struct. Dyn., 45, 635-652 (2016)
[62] Li, T.; Seguy, S.; Berlioz, A., On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink, Nonlinear Dyn., 87, 1453-1466 (2017)
[63] Darabi, A.; Leamy, MJ, Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting, Nonlinear Dyn., 87, 2127-2146 (2017)
[64] Li, W.; Wierschem, NE; Li, X.; Yang, T., On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink, J. Sound Vib., 437, 166-179 (2018)
[65] Li, W.; Wierschem, NE; Li, X.; Yang, T.; Brennan, MJ, Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam, Nonlinear Dyn., 100, 951-971 (2020)
[66] Kovaleva, A.; Manevitch, LI, Resonance energy transport and exchange in oscillator arrays, Phys. Rev. E, 88, 2, 022904 (2013)
[67] Kovaleva, A.; Manevitch, LI, Autoresonance versus localization in weakly coupled oscillators, Physica D, 320, 1-8 (2016) · Zbl 1364.34048
[68] Manevitch, LI; Kovaleva, A., Autoresonant dynamics of weakly coupled oscillators, Nonlinear Dyn., 84, 683-695 (2016)
[69] Babitsky, VI, Theory of vibro-impact systems (1998), Berlin: Springer, Berlin · Zbl 1041.70001
[70] Gendelman, OV, Analytic treatment of a system with a vibro-impact nonlinear energy sink, J. Sound Vib., 331, 21, 4599-4608 (2012)
[71] Manevich, LI; Gendelman, OV, Oscillatory models of vibro-impact type for essentially nonlinear systems, Proc Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 222, 2007-2043 (2008)
[72] Babitsky, VI; Krupenin, VL, Vibrations of Strongly Nonlinear Discontinuous Systems (2001), Berlin: Springer, Berlin · Zbl 0997.70001
[73] Fidlin, A.: On the oscillations in discontinuous and unconventionally strong excited systems: asymptotic approaches and dynamic effects. Doctoral Dissertation, Department of Mechanical Engineering, University of Karlsruhe (2002)
[74] Zhuravlev, VF, Investigation of certain vibro-impact systems by the method of non-smooth transformations, Izvestiva AN SSSR Mehanika Tverdogo Tela (Mechanics of Solids), 12, 24-28 (1976)
[75] Pilipchuk, VN, Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations, J. Sound Vib., 192, 1, 43-64 (1996) · Zbl 1232.70015
[76] Kobrinskii, AE, Dynamics of Mechanisms with Elastic Connections and Impact Systems (1969), London: Iliffe Books, London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.