×

Mathematical and numerical challenges in diffuse optical tomography inverse problems. (English) Zbl 07836664

Summary: Computed Tomography (CT) is an essential imaging tool for medical inspection, diagnosis and prevention. While X-rays CT is a consolidated technology, there is nowadays a strong drive for innovation in this field. Between the emerging topics, Diffuse Optical Tomography (DOT) is an instance of Diffuse Optical Imaging which uses non-ionizing light in the near-infrared (NIR) band as investigating signal. Non-trivial challenges accompany DOT reconstruction, which is a severely ill-conditioned inverse problem due to the highly scattering nature of the propagation of light in biological tissues. Correspondingly, the solution of this problem is far from being trivial. In this review paper, we first recall the theoretical basis of NIR light propagation, the relevant mathematical models with their derivation in the perspective of a hierarchy of modeling approaches and the analytical results on the uniqueness issue and stability estimates. Then we describe the state-of-the-art in analytic theory and in computational and algorithmic methods. We present a survey of the few contributions regarding DOT reconstruction aided by machine learning approaches and we conclude providing perspectives in the mathematical treatment of this highly challenging problem.

MSC:

35R30 Inverse problems for PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning
92C55 Biomedical imaging and signal processing

Software:

glmnet; corner.m
Full Text: DOI

References:

[1] E. A. Abuelhia Alghamdi, Evaluation of arising exposure of ionizing radiation from computed tomography and the associated health concerns, Journal of Radiation Research and Applied Sciences, 13, 295-300 (2020) · doi:10.1080/16878507.2020.1728962
[2] C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018. · Zbl 1402.68001
[3] V. Agoshkov, Boundary Value Problems for Transport Equations, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Basel, 1998. · Zbl 0914.35001
[4] G. S. H. Alberti Ammari, Disjoint sparsity for signal separation and applications to hybrid inverse problems in medical imaging, Appl. Comput. Harmon. Anal., 42, 319-349 (2017) · Zbl 1354.94002 · doi:10.1016/j.acha.2015.08.013
[5] G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems, volume 25 of Cours Spécialisés [Specialized Courses], Société Mathématique de France, Paris, 2018. · Zbl 1391.35002
[6] G. S. Alberti and M. Santacesaria, Calderón’s inverse problem with a finite number of measurements, Forum Math. Sigma, 7 (2019), Paper No. e35, 20 pp. · Zbl 1426.35235
[7] G. S. M. Alberti Santacesaria, Calderón’s inverse problem with a finite number of measurements II: Independent data, Appl. Anal., 101, 3636-3654 (2022) · Zbl 1494.35179 · doi:10.1080/00036811.2020.1745192
[8] G. S. M. Alberti Santacesaria, Infinite-dimensional inverse problems with finite measurements, Arch. Ration. Mech. Anal., 243, 1-31 (2022) · Zbl 1481.35390 · doi:10.1007/s00205-021-01718-4
[9] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27, 153-172 (1988) · Zbl 0616.35082 · doi:10.1080/00036818808839730
[10] G. M. E. S. Alessandrini Di Cristo Francini Vessella, Stability for quantitative photoacoustic tomography with well-chosen illuminations, Ann. Mat. Pura Appl. (4), 196, 395-406 (2017) · Zbl 1371.35337 · doi:10.1007/s10231-016-0577-4
[11] M. H. Q. Althobaiti Vavadi Zhu, Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix, Journal of Biomedical Optics, 22, 026002 (2017) · doi:10.1117/1.JBO.22.2.026002
[12] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, volume 62 of Mathématiques & Applications (Berlin) [Mathematics & Applications]., Springer, Berlin, 2008. · Zbl 1181.92052
[13] H. E. V. H. Ammari Bossy Jugnon Kang, Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density, SIAM J. Appl. Math., 71, 676-693 (2011) · Zbl 1225.78009 · doi:10.1137/09077905X
[14] M. B. R. E. S. A. D. Applegate Istfan Spink Tank Roblyer, Recent advances in high speed diffuse optical imaging in biomedicine, APL Photonics, 5, 040802 (2020) · doi:10.1063/1.5139647
[15] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41. · Zbl 0926.35155
[16] S. R. J. P. V. M. E. T. M. Arridge Kaipio Kolehmainen Schweiger Somersalo Tarvainen Vauhkonen, Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Problems, 22, 175-195 (2006) · Zbl 1138.65042 · doi:10.1088/0266-5611/22/1/010
[17] S. R. Arridge, J. P. Kaipio, V. Kolehmainen and T. Tarvainen, Optical imaging, in Handbook of Mathematical Methods in Imaging. Vol. 1, 2, 3, Springer, New York, (2015), 1033-1079. · Zbl 1331.92070
[18] S. R. W. R. B. Arridge Lionheart, Nonuniqueness in diffusion-based optical tomography, Opt. Lett., 23, 882-884 (1998) · doi:10.1364/OL.23.000882
[19] S. P. O. C.-B. Arridge Maass Öktem Schönlieb, Solving inverse problems using data-driven models, Acta Numer., 28, 1-174 (2019) · Zbl 1429.65116 · doi:10.1017/S0962492919000059
[20] S. R. J. C. Arridge Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25, 123010 (2009) · Zbl 1188.35197 · doi:10.1088/0266-5611/25/12/123010
[21] A. E. O. M. Aspri Beretta Scherzer Muszkieta, Asymptotic expansions for higher order elliptic equations with an application to quantitative photoacoustic tomography, SIAM J. Imaging Sci., 13, 1781-1833 (2020) · Zbl 1455.35074 · doi:10.1137/20M1317062
[22] A. Aspri, Y. Korolev and O. Scherzer, Data driven regularization by projection, Inverse Problems, 36 (2020), 125009, 35 pp. · Zbl 1502.65030
[23] K. L. Astala Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2), 163, 265-299 (2006) · Zbl 1111.35004 · doi:10.4007/annals.2006.163.265
[24] G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive regime, Inverse Problems, 27 (2011), 075003, 20 pp. · Zbl 1225.92024
[25] G. Bal and K. Ren, Non-uniqueness result for a hybrid inverse problem, in Tomography and inverse transport theory, volume 559 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2011), 29-38. · Zbl 1242.65225
[26] G. Bal and K. Ren, On multi-spectral quantitative photoacoustic tomography in diffusive regime, Inverse Problems, 28 (2012), 025010, 13 pp. · Zbl 1233.92043
[27] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010, 20. · Zbl 1197.35311
[28] G. G. Bal Uhlmann, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Comm. Pure Appl. Math., 66, 1629-1652 (2013) · Zbl 1273.35308 · doi:10.1002/cpa.21453
[29] A. M. Beck Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2, 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[30] A. P. M. G. G. Benfenati Causin Lupieri Naldi, Regularization techniques for inverse problem in DOT applications, Journal of Physics: Conference Series, 1476, 012007 (2020) · doi:10.1088/1742-6596/1476/1/012007
[31] A. Benfenati, G. Bisazza and P. Causin, A learned-SVD approach for regularization in diffuse optical tomography, arXiv preprint, arXiv: 2111.13401, 2021.
[32] A. Benfenati and V. Ruggiero, Inexact Bregman iteration with an application to Poisson data reconstruction, Inverse Problems, 29 (2013), 065016, 31 pp. · Zbl 1311.94010
[33] M. M. Benning Burger, Modern regularization methods for inverse problems, Acta Numerica, 27, 1-111 (2018) · Zbl 1431.65080 · doi:10.1017/S0962492918000016
[34] E. Beretta, M. Muszkieta, W. Naetar and O. Scherzer, A variational method for quantitative photoacoustic tomography with piecewise constant coefficients, in Variational Methods, volume 18 of Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, (2017), 202-224. · Zbl 1404.35483
[35] M. Bertero, P. Boccacci, G. Talenti, R. Zanella and L. Zanni, A discrepancy principle for Poisson data, Inverse Problems, 26 (2010), 105004, 20 pp. · Zbl 1200.62067
[36] D. A. Boas, A fundamental limitation of linearized algorithms for diffuse optical tomography, Opt. Express, 1, 404-413 (1997)
[37] D. A. T. S. R. Boas Gaudette Arridge, Simultaneous imaging and optode calibration with diffuse optical tomography, Optics Express, 8, 263-270 (2001) · doi:10.1364/OE.8.000263
[38] Y. E. Boink and C. Brune, Learned SVD: Solving inverse problems via hybrid autoencoding, CoRR, abs/1912.10840, 2019.
[39] E. Bonnetier, M. Choulli and F. Triki, Stability for quantitative photoacoustic tomography revisited, Res. Math. Sci., 9 (2022), Paper No. 24, 30 pp. · Zbl 1491.35449
[40] A.-P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, (1980), 65-73.
[41] N. A. M. Cao Nehorai Jacob, Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm, Opt. Express, 15, 13695-13708 (2007) · doi:10.1364/OE.15.013695
[42] P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum Math. Pi, 4 (2016), e2, 28 pp. · Zbl 1330.35525
[43] C. M. Carpenter and H. Dehghani, in European Conference on Biomedical Optics, Optica Publishing Group, (2007), 6629_56.
[44] K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Educational Publishers Inc., US, 1967. · Zbl 0162.58903
[45] J. L. S. V. Castellanos Gómez Guerra, The triangle method for finding the corner of the L-curve, Applied Numerical Mathematics, 43, 359-373 (2002) · Zbl 1014.65022 · doi:10.1016/S0168-9274(01)00179-9
[46] P. Causin, M. G. Lupieri, G. Naldi and R.-M. Weishaeupl, Mathematical and numerical challenges in optical screening of female breast, International Journal for Numerical Methods in Biomedical Engineering, 36 (2020), e3286, 16 pp.
[47] A. E. A. J. F. N. D. J. R. F. B. J. Cerussi Berger Bevilacqua Shah Jakubowski Butler Holcombe Tromberg, Sources of absorption and scattering contrast for near-infrared optical mammography, Academic Radiology, 8, 211-218 (2001) · doi:10.1016/S1076-6332(03)80529-9
[48] A. V. D. M. T. Chambolle Caselles Cremers Novaga Pock, An introduction to total variation for image analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 263-340 (2010) · Zbl 1209.94004 · doi:10.1515/9783110226157.263
[49] G. Chen, F. Zhu and P. A. Heng, An efficient statistical method for image noise level estimation, in 2015 IEEE International Conference on Computer Vision (ICCV), (2015), 477-485.
[50] M. Choulli, Some stability inequalities for hybrid inverse problems, C. R. Math. Acad. Sci. Paris, 359, 1251-1265 (2021) · Zbl 1483.35339 · doi:10.5802/crmath.262
[51] M. P. Choulli Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka Journal of Mathematics, 36, 87-104 (1999) · Zbl 0998.35064
[52] B. T. S. R. K. P. P. C. Cox Arridge Köstli Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method, Appl. Opt., 45, 1866-1875 (2006) · doi:10.1364/AO.45.001866
[53] J. R. C. E. Curran Gaburro Nolan Somersalo, Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary, Inverse Problems and Imaging, 17, 338-361 (2023) · Zbl 1514.35158
[54] H. S. B. W. A. Dehghani Srinivasan Pogue Gibson, Numerical modelling and image reconstruction in diffuse optical tomography, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 3073-3093 (2009) · Zbl 1185.78014 · doi:10.1098/rsta.2009.0090
[55] B. Deng, H. Gu and S. A. Carp, Deep learning enabled high-speed image reconstruction for breast diffuse optical tomography, in Optical Tomography and Spectroscopy of Tissue XIV, International Society for Optics and Photonics, 11639 (2021), 116390B.
[56] O. R. W. R. B. C. J. Doeva Gaburro Lionheart Nolan, Lipschitz stability at the boundary for time-harmonic diffuse optical tomography, Appl. Anal., 101, 3697-3715 (2022) · Zbl 1497.35154 · doi:10.1080/00036811.2020.1758314
[57] F. Y. B. D. R. Dubot Favennec Rousseau Rousse, Regularization opportunities for the diffuse optical tomography problem, International Journal of Thermal Sciences, 98, 1-23 (2015) · doi:10.1016/j.ijthermalsci.2015.06.015
[58] W. G. Egan and T. W. Hilgeman, editors, Optical properties of inhomogeneous materials, Academic Press, (1979), 221-226.
[59] P. L. O. Elbau Mindrinos Scherzer, Inverse problems of combined photoacoustic and optical coherence tomography, Math. Methods Appl. Sci., 40, 505-522 (2017) · Zbl 1355.92058 · doi:10.1002/mma.3915
[60] P. Elbau, L. Mindrinos and O. Scherzer, Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging, Inverse Problems, 34 (2018), 014006, 22 pp. · Zbl 1400.78016
[61] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, Springer Netherlands, 1996. · Zbl 0859.65054
[62] J. Q. Z. Z. K. Feng Sun Li Sun Jia, Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography, Journal of Biomedical Optics, 24, 051407 (2018) · doi:10.1117/1.JBO.24.5.051407
[63] E. A. S. F. P. A. Ferocino Pifferi Arridge Martelli Taroni Farina, Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe, Applied Sciences, 9, 2849 (2019) · doi:10.3390/app9142849
[64] S. Foschiatti, Lipschitz stability estimate for the simultaneous recovery of two coefficients in the anisotropic Schrödinger type equation via local Cauchy data, J. Math. Anal. Appl., 531 (2024), Paper No. 127753, 35 pp. · Zbl 07852328
[65] S. E. Foschiatti Sincich, Stable determination of an anisotropic inclusion in the Schrödinger equation from local Cauchy data, Inverse Probl. Imaging, 17, 584-613 (2023) · Zbl 1512.35658 · doi:10.3934/ipi.2022063
[66] R. J. R. L. Fretterd Longini, Diffusion dipole source, JOSA, 63, 336-337 (1973) · doi:10.1364/JOSA.63.000336
[67] J. T. R. Friedman Hastie Tibshirani, Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, 33, 1-22 (2010) · doi:10.18637/jss.v033.i01
[68] R. Gaburro, Stable determination at the boundary of the optical properties of a medium: The static case, Rend. Istit. Mat. Univ. Trieste, 48, 407-431 (2016) · Zbl 1454.35096 · doi:10.13137/2464-8728/13204
[69] H. Gao, S. Osher and H. Zhao, Quantitative photoacoustic tomography, in Mathematical Modeling in Biomedical Imaging. II, 2035 of Lecture Notes in Math., Springer, Heidelberg, (2012), 131-158. · Zbl 1345.92087
[70] A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Physics in Medicine Biology, 50 (2005), R1.
[71] G. H. U. Golub Von Matt, Generalized cross-validation for large-scale problems, Journal of Computational and Graphical Statistics, 6, 1-34 (1997) · doi:10.2307/1390722
[72] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Springer, 2016. · Zbl 1373.68009
[73] R. Guo, J. Jiang and Y. Li, Learn an index operator by CNN for solving diffusive optical tomography: a deep direct sampling method, J. Sci. Comput., 95 (2023), no.1, Paper No. 31, 24 pp. · Zbl 1519.92110
[74] B. D. Haberman Tataru, Uniqueness in Calderón’s problem with Lipschitz conductivities, Duke Math. J., 162, 496-516 (2013) · Zbl 1260.35251 · doi:10.1215/00127094-2019591
[75] J. Hadamard, Sur les problèmes aux dérivés partielles et leur signification physique, Princeton University Bulletin, 13, 49-52 (1902)
[76] M. L. L. S. Haltmeier Neumann Nguyen Rabanser, Analysis of the linearized problem of quantitative photoacoustic tomography, SIAM J. Appl. Math., 78, 457-478 (2018) · Zbl 1383.65013 · doi:10.1137/16M1109291
[77] M. Haltmeier, L. Neumann and S. Rabanser, Single-stage reconstruction algorithm for quantitative photoacoustic tomography, Inverse Problems, 31 (2015), 065005, 24 pp. · Zbl 1416.92100
[78] M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT Numerical Mathematics, 36, 287-301 (1996) · Zbl 0849.65039 · doi:10.1007/BF01731984
[79] P. C. Hansen, T. K. Jensen and G. Rodriguez, An adaptive pruning algorithm for the discrete L-curve criterion, Journal of Computational and Applied Mathematics, 198 (2007), 483-492. Special Issue: Applied Computational Inverse Problems. · Zbl 1101.65044
[80] P. C. Hansen, J. G. Nagy and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and Filtering, Fundamentals of Algorithms. Society for Industrial and Applied Mathematics, 2006. · Zbl 1112.68127
[81] P. C. D. P. Hansen O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14, 1487-1503 (1993) · Zbl 0789.65030 · doi:10.1137/0914086
[82] B. Harrach, On uniqueness in diffuse optical tomography, Inverse Problems, 25 (2009), 055010, 14 pp. · Zbl 1169.35388
[83] B. Harrach, Simultaneous determination of the diffusion and absorption coefficient from boundary data, Inverse Probl. Imaging, 6, 663-679 (2012) · Zbl 1261.35153 · doi:10.3934/ipi.2012.6.663
[84] B. Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems, 35 (2019), 024005, 19 pp. · Zbl 1491.92080
[85] J. S. J. E. Heino Arridge Sikora Somersalo, Anisotropic effects in highly scattering media, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 68, 319081-319088 (2003) · doi:10.1103/PhysRevE.68.031908
[86] J. E. Heino Somersalo, Estimation of optical absorption in anisotropic background, Inverse Problems, 18, 559-573 (2002) · Zbl 1003.35124 · doi:10.1088/0266-5611/18/3/304
[87] L. G. J. L. Henyey Greenstein, Diffuse radiation in the galaxy, Astrophysical Journal, 93, 70-83 (1941) · doi:10.1086/144246
[88] A. H. A. Y. G. S. A. D. J. M. U. J. Hielscher Bluestone Abdoulaev Klose Lasker Stewart Netz Beuthan, Near-infrared diffuse optical tomography, Disease Markers, 18, 313-337 (2002) · doi:10.1155/2002/164252
[89] Y. Y. Hoshi Yamada, Overview of diffuse optical tomography and its clinical applications, Journal of Biomedical Optics, 21, 091312 (2016) · doi:10.1117/1.JBO.21.9.091312
[90] M. R. K. M. R. Ikeda Makino Imai Matsumoto Hitomi, A method for estimating noise variance of CT image, Computerized Medical Imaging and Graphics, 34, 642-650 (2010) · doi:10.1016/j.compmedimag.2010.07.005
[91] V. Isakov, Inverse Problems for Partial Differential Equations, volume 127 of Applied Mathematical Sciences, Springer, Cham, third edition, 2017. · Zbl 1366.65087
[92] A. Ishimaru, Theory and application of wave propagation and scattering in random media, Proceedings of the IEEE, 65, 1030-1061 (1977)
[93] S. L. C. A. S. A. Jacques Alter Prahl, Angular dependence of HeNe laser light scattering by human dermis, Lasers Life Sci., 1, 309-333 (1987)
[94] R. P. K. P. K. Jagannath Yalavarthy, Minimal residual method provides optimal regularization parameter for diffuse optical tomography, Journal of Biomedical Optics, 17, 106015 (2012) · doi:10.1117/1.JBO.17.10.106015
[95] A. K. Y. S. D. F. A. Jha Zhu Arridge Wong Rahmim, Incorporating reflection boundary conditions in the neumann series radiative transport equation: Application to photon propagation and reconstruction in diffuse optical imaging, Biomed. Opt. Express, 9, 1389-1407 (2018) · doi:10.1364/BOE.9.001389
[96] B. Y. J. Jin Zhao Zou, Iterative parameter choice by discrepancy principle, IMA Journal of Numerical Analysis, 32, 1714-1732 (2012) · Zbl 1261.65052 · doi:10.1093/imanum/drr051
[97] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences, Springer-Verlag, New York, 2005. · Zbl 1068.65022
[98] B. Kaltenbacher, Regularization based on all-at-once formulations for inverse problems, SIAM J. Numer. Anal., 54, 2594-2618 (2016) · Zbl 1347.65104 · doi:10.1137/16M1060984
[99] R. M. Kohn Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37, 289-298 (1984) · Zbl 0586.35089 · doi:10.1002/cpa.3160370302
[100] R. V. M. Kohn Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math., 38, 643-667 (1985) · Zbl 0595.35092 · doi:10.1002/cpa.3160380513
[101] S. D. G. Y. K. V. A. G. J. C. Konecky Panasyuk Lee Markel Yodh Schotland, Imaging complex structures with diffuse light, Optics Express, 16, 5048-5060 (2008) · doi:10.1364/OE.16.005048
[102] F. S. E. L. Larusson Fantini Miller, Hyperspectral image reconstruction for diffuse optical tomography, Biomed. Opt. Express, 2, 946-965 (2011) · doi:10.1364/BOE.2.000946
[103] K. Lee, Optical mammography: Diffuse optical imaging of breast cancer, World Journal of Clinical Oncology, 2, 64-72 (2011) · doi:10.5306/wjco.v2.i1.64
[104] D. R. O. J. L. C. A. T. D. K. J. G. A. Leff Warren Enfield Gibson Athanasiou Patten Hebden Yang Darzi, Diffuse optical imaging of the healthy and diseased breast: A systematic review, Breast Cancer Research and Treatment, 108, 9-22 (2008) · doi:10.1007/s10549-007-9582-z
[105] J. Z. G. L. J. Li Xie Liu Yang Zou, Diffusion optical tomography reconstruction based on convex-nonconvex graph total variation regularization, Mathematical Methods in the Applied Sciences, 46, 4534-4545 (2023) · doi:10.1002/mma.8777
[106] L. Li, C. Chen and B. Bi, A new total variational regularization method for nonlinear inverse problems in fluorescence molecular tomography, Journal of Computational and Applied Mathematics, 365 (2020), 112408, 14 pp. · Zbl 1426.92038
[107] P. A. H. K. Lo Chiang, Three-dimensional fluorescence diffuse optical tomography using the adaptive spatial prior approach, Journal of Medical and Biological Engineering, 39, 827-834 (2019) · doi:10.1007/s40846-019-00465-y
[108] J. R. Lorenzo, Principles of Diffuse Light Propagation: Light Propagation in Tissues with Applications in Biology and Medicine, World Scientific, 2012.
[109] W. J. D. L. I. B. Lu Duan Orive-Miguel Herve Styles, Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography, Biomed. Opt. Express, 10, 2684-2707 (2019) · doi:10.1364/BOE.10.002684
[110] M. Machida, The inverse Rytov series for diffuse optical tomography, Inverse Problems, 39 (2023), 105012, 20 pp. · Zbl 07749155
[111] M. A. I. S. R. T. Mozumder Hauptmann Nissilä Arridge Tarvainen, A model-based iterative learning approach for diffuse optical tomography, IEEE Transactions on Medical Imaging, 41, 1289-1299 (2022) · doi:10.1109/TMI.2021.3136461
[112] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143, 71-96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[113] W. O. Naetar Scherzer, Quantitative photoacoustic tomography with piecewise constant material parameters, SIAM J. Imaging Sci., 7, 1755-1774 (2014) · Zbl 1361.94018 · doi:10.1137/140959705
[114] I. Nissilä, T. Noponen, J. Heino, T. Kajava and T. Katila, Diffuse Optical Imaging, Springer US, Boston, MA, (2005), 77-129.
[115] S. Y. Okawa Hoshi, A review of image reconstruction algorithms for diffuse optical tomography, Applied Sciences, 13, 5016 (2023) · doi:10.3390/app13085016
[116] R. Patra and P. K. Dutta, Improved DOT reconstruction by estimating the inclusion location using artificial neural network, in Medical Imaging 2013: Physics of Medical Imaging, International Society for Optics and Photonics, 8668 (2013), 86684C.
[117] A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio and T. Tarvainen, A Bayesian approach to spectral quantitative photoacoustic tomography, Inverse Problems, 30 (2014), 065012, 18 pp. · Zbl 1301.92044
[118] A. V. J. P. B. T. S. R. T. Pulkkinen Kolehmainen Kaipio Cox Arridge Tarvainen, Approximate marginalization of unknown scattering in quantitative photoacoustic tomography, Inverse Probl. Imaging, 8, 811-829 (2014) · Zbl 1302.94012 · doi:10.3934/ipi.2014.8.811
[119] J. A. F. D. Radford Lyons Tonolini Faccio, Role of late photons in diffuse optical imaging, Opt. Express, 28, 29486-29495 (2020) · doi:10.1364/OE.402503
[120] K. G. A. H. Ren Bal Hielscher, Frequency domain optical tomography based on the equation of radiative transfer, SIAM J. Sci. Comput., 28, 1463-1489 (2006) · Zbl 1200.65089 · doi:10.1137/040619193
[121] K. H. H. Ren Gao Zhao, A hybrid reconstruction method for quantitative PAT, SIAM J. Imaging Sci., 6, 32-55 (2013) · Zbl 1280.49054 · doi:10.1137/120866130
[122] J. L. T. C. Sandell Zhu, A review of in-vivo optical properties of human tissues and its impact on PDT, Journal of Biophotonics, 4, 773-787 (2011)
[123] O. Scherzer, editor, Handbook of Mathematical Methods in Imaging. Vol. 1, 2, 3, Springer, New York, second edition, 2015.
[124] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, volume 167 of Applied Mathematical Sciences, Springer, New York, 2009. · Zbl 1177.68245
[125] R. A. J. A. N. J. Schulz Stein Pelc, How CT happened: The early development of medical computed tomography, Journal of Medical Imaging, 8, 052110 (2021) · doi:10.1117/1.JMI.8.5.052110
[126] M. S. R. M. D. T. Schweiger Arridge Hiraoka Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions, Medical Physics, 22, 1779-1792 (1995) · doi:10.1118/1.597634
[127] H. Singh, R. J. Cooper, C. W. Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, et al., Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study, NeuroImage: Clinical, 5 (2014), 256-265.
[128] S. B. W. S. H. C. S. J. J. T. D. S. P. K. D. Srinivasan Pogue Jiang Dehghani Kogel Soho Gibson Tosteson Poplack Paulsen, Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography, Proceedings of the National Academy of Sciences, 100, 12349-12354 (2003) · doi:10.1073/pnas.2032822100
[129] Y. Z. U. S. Sun Xia Kamilov, Efficient and accurate inversion of multiple scattering with deep learning, Optics Express, 26, 14678-14688 (2018) · doi:10.1364/OE.26.014678
[130] J. G. Sylvester Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125, 153-169 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[131] J. Tang, Nonconvex and nonsmooth total variation regularization method for diffuse optical tomography based on RTE, Inverse Problems, 37 (2021), 065001, 35 pp. · Zbl 1480.65242
[132] J. Tang, B. Han, W. Han, B. Bi and L. Li, Mixed total variation and L1 regularization method for optical tomography based on radiative transfer equation, Computational and Mathematical Methods in Medicine, 2017 (2017), Art. ID 2953560, 15 pp. · Zbl 1369.92065
[133] T. Tarvainen, B. T. Cox, J. P. Kaipio and S. R. Arridge, Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography, Inverse Problems, 28 (2012), 084009, 17 pp. · Zbl 1252.92041
[134] L. B. M. A. L. J. J. T. M. X. N. J. Tian Hunt Bell Yi Smith Ochoa Intes Durr, Deep learning in biomedical optics, Lasers in Surgery and Medicine, 53, 748-775 (2021) · doi:10.1002/lsm.23414
[135] E. Turajlic, Adaptive SVD domain-based white Gaussian noise level estimation in images, IEEE Access, 6, 72735-72747 (2018) · doi:10.1109/ACCESS.2018.2882298
[136] K. M. S. Uddin, A. Mostofa, M. Anastasio and Q. Zhu, Improved two step reconstruction method in ultrasound guided diffuse optical tomography, in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), page OF1D.5. Optica Publishing Group, 2018.
[137] G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems, 25 (2009), 123011, 39 pp. · Zbl 1181.35339
[138] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM Journal on Scientific and Statistical Computing, 4, 164-176 (1983) · Zbl 0533.65082 · doi:10.1137/0904012
[139] C. R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems, 12, 535-547 (1996) · Zbl 0867.65025 · doi:10.1088/0266-5611/12/4/013
[140] B. Y. D. X. M. T. H. F. Wang Zhang Liu Ding Dan Pan Zhao Gao, Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography, Appl. Opt., 58, 863-870 (2019) · doi:10.1364/AO.58.000863
[141] L. S. L. Wang Jacques, Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media, J. Opt. Soc. Am. A, 10, 1746-1752 (1993) · doi:10.1364/JOSAA.10.001746
[142] L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons, 2012.
[143] J. J. Xie Zou, An improved model function method for choosing regularization parameters in linear inverse problems, Inverse Problems, 18, 631-643 (2002) · Zbl 1012.65050 · doi:10.1088/0266-5611/18/3/307
[144] H. B. Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi and G. Hamarneh, Multitask deep learning reconstruction and localization of lesions in limited angle diffuse optical tomography, IEEE Transactions on Medical Imaging, 2021.
[145] W. S. D. J. Yin Osher Goldfarb Darbon, Bregman iterative algorithms for \(\ell_1\)-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1, 143-168 (2008) · Zbl 1203.90153 · doi:10.1137/070703983
[146] J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S.-I. Lee, E. Y. Chae, H. H. Kim, Y. M. Bae, et al., Deep learning diffuse optical tomography, IEEE Transactions on Medical Imaging, 39 (2020), 877-887.
[147] L. A. M. V. Zanni Benfenati Bertero Ruggiero, Numerical methods for parameter estimation in Poisson data inversion, Journal of Mathematical Imaging and Vision, 52, 397-413 (2015) · Zbl 1327.65117 · doi:10.1007/s10851-014-0553-9
[148] Y. M. A. S. F. J. B. W. K. D. Zhao Mastanduno Jiang El-Ghussein Gui Pogue Paulsen, Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast, Journal of Biomedical Optics, 20, 056009 (2015) · doi:10.1117/1.JBO.20.5.056009
[149] Y. A. H. K. A. H. J. T. A. Zhao Raghuram Kim Hielscher Robinson Veeraraghavan, High resolution, deep imaging using confocal time-of-flight diffuse optical tomography, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 2206-2219 (2021) · doi:10.1109/TPAMI.2021.3075366
[150] P. Zimmermann, Inverse problem for a nonlocal diffuse optical tomography equation, Inverse Problems, 39 (2023), 094001, 25 pp. · Zbl 1537.35423
[151] H. T. Zou Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320 (2005) · Zbl 1069.62054 · doi:10.1111/j.1467-9868.2005.00503.x
[152] Y. Y. S. Q. Zou Zeng Li Zhu, Machine learning model with physical constraints for diffuse optical tomography, Biomedical Optics Express, 12, 5720-5735 (2021) · doi:10.1364/BOE.432786
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.