×

Sparse model selection under heterogeneous noise: exact penalisation and data-driven thresholding. (English) Zbl 1294.62058

Summary: We consider a Gaussian sequence space model \(X_{\lambda}=f_{\lambda}+xi_{\lambda}\), where the noise variables (\(\xi_{\lambda})_\lambda\) are independent, but with heterogeneous variances (\(\sigma_{\lambda}^{2})_\lambda\). Our goal is to estimate the unknown signal vector (\(f_\lambda\)) by a model selection approach. We focus on the situation where the non-zero entries \(f_\lambda\) are sparse. Then the heterogenous case is much more involved than the homogeneous model where \(\sigma_{\lambda}^{2}=\sigma^2\) is constant. Indeed, we can no longer profit from symmetry inside the stochastic process that one needs to control. The problem and the penalty do not only depend on the number of coefficients that one selects, but also on their position. This appears also in the minimax bounds where the worst coefficients will go to the larger variances. With a careful and explicit choice of the penalty, however, we are able to select the correct coefficients and get a sharp non-asymptotic control of the risk of our procedure. Some finite sample results from simulations are provided.

MSC:

62G05 Nonparametric estimation
62J05 Linear regression; mixed models

References:

[1] Abramovich F., Benjamini Y., Donoho D.L. and Johnstone I.M. (2006). Adapting to unknown sparsity by controlling the false discovery rate., Ann. Statist. 34 , 584-653. · Zbl 1092.62005 · doi:10.1214/009053606000000074
[2] Abramovich F. and Silverman B.W. (1998). Wavelet decomposition approaches to statistical inverse problems., Biometrika 85 , 115-129. · Zbl 0908.62095 · doi:10.1093/biomet/85.1.115
[3] Akaike H. (1973)., Information theory and an extension of the maximum likelihood principle. Proc. 2nd Intern. Symp. Inf. Theory, Petrov P.N. and Csaki F. eds. Budapest, 267-281. · Zbl 0283.62006
[4] Benjamini Y. and Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing., J. Royal Stat. Soc. Ser. B 57 , 289-300. · Zbl 0809.62014
[5] Birgé L. and Massart P. (2001). Gaussian model selection., J. Eur. Math. Soc. 3 203-268. · Zbl 1037.62001 · doi:10.1007/s100970100031
[6] Cavalier L. (2004). Estimation in a problem of fractional integration., Inverse Problems 20 , 1-10. · Zbl 1064.62090 · doi:10.1088/0266-5611/20/5/007
[7] Cavalier L. (2011). Inverse problems in statistics. Inverse problems and high-dimensional estimation, Lecture Notes in Statistics , Springer. · doi:10.1007/978-3-642-19989-9_1
[8] Cavalier L. and Golubev Yu. (2006). Risk hull method and regularization by projections of ill-posed inverse problems., Ann. Statist. 34 , 1653-1677. · Zbl 1246.62082 · doi:10.1214/009053606000000542
[9] Cavalier L., Golubev G.K., Picard D. and Tsybakov A.B. (2002). Oracle inequalities in inverse problems., Ann. Statist. 30 , 843-874. · Zbl 1029.62032 · doi:10.1214/aos/1028674843
[10] Cavalier L. and Raimondo M. (2007). Wavelet deconvolution with noisy eigenvalues., IEEE Trans. Signal Proc. 55 , 2414-2424. · Zbl 1391.94160 · doi:10.1109/TSP.2007.893754
[11] Cohen A., Hoffmann M. and Reiß M. (2004). Adaptive wavelet Galerkin method for linear inverse problems., SIAM J. Numer. Anal. 42 , 1479-1501. · Zbl 1077.65054 · doi:10.1137/S0036142902411793
[12] Comte F. and Renault E. (1996). Long memory continuous time models., Journal of Econometrics 73 , 101-149. · Zbl 0856.62104 · doi:10.1016/0304-4076(95)01735-6
[13] Donoho D.L. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition., Appl. and Comput. Harmon. Anal. 2 , 101-126. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008
[14] Golubev Y. (2002). Reconstruction of sparse vectors in white Gaussian noise., Probl. Inf. Transm. 1 65-79. · Zbl 1024.62003 · doi:10.1023/A:1020098307781
[15] Golubev Y. (2011). On oracle inequalities related to data-driven hard thresholding., Probab. Theory Related Fields 150 , 435-469. · Zbl 1230.62037 · doi:10.1007/s00440-010-0280-0
[16] Hoffmann M. and Reiß M. (2008). Nonlinear estimation for linear inverse problems with error in the operator., Ann. Statist. 36 , 310-336. · Zbl 1134.65038 · doi:10.1214/009053607000000721
[17] Johnstone I.M. (2011)., Gaussian estimation: Sequence and wavelets models. Book
[18] Johnstone I.M. and D. Paul (2013). Adaptation in a class of linear inverse problems.,
[19] Johnstone I.M. and Silverman B.W. (1997). Wavelet threshold estimators for data with correlated noise., J. Royal Stat. Soc. Ser. B 59 , 300-351. · Zbl 0886.62044 · doi:10.1111/1467-9868.00071
[20] Massart P. (2007)., Concentration inequalities and model selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003. Lecture Notes in Mathematics, Springer, Berlin.
[21] Rochet P. (2013). Adaptive hard-thresholding for linear inverse problems. To appear in, ESAIM . · Zbl 1285.62046 · doi:10.1051/ps/2012003
[22] Sowell F. (1990)., The fractional unit root distribution . Econometrica 58 , 495-505. · Zbl 0727.62025 · doi:10.2307/2938213
[23] Wang Y. (1996). Function estimation via wavelet shrinkage for long-memory data., Annals of Statist. 24 , 466-484. · Zbl 0859.62042 · doi:10.1214/aos/1032894449
[24] Wu Z. and Zhou H.H. (2013). Model selection and sharp asymptotic minimaxity., Probab. Theory Related Fields 156 , 193-227. · Zbl 06176805 · doi:10.1007/s00440-012-0424-5
[25] Zygmund A. (1959)., Trigonometric series. 2nd ed. Vols. I, II. Cambridge University Press, New York. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.