×

The motion of point particles in curved spacetime. (English) Zbl 1316.83024

Summary: This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field’s action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field’s singular part and show that it exerts no force on the particle – its only effect is to contribute to the particle’s inertia. What remains after subtraction is a regular field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (Part I). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle’s word line (Part II). It continues with a thorough discussion of Green’s functions in curved spacetime (Part III). The review presents a detailed derivation of each of the three equations of motion (Part IV). Because the notion of a point mass is problematic in general relativity, the review concludes (Part V) with an alternative derivation of the equations of motion that applies to a small body of arbitrary internal structure.
Update to the authors’ paper [Zbl 1071.83011]: This version of the review is a major update of the original article published in 2004. Two additional authors, Adam Pound and Ian Vega, have joined the article’s original author, and each one has contributed a major piece of the update. The literature survey presented in Sections 2 was contributed by Ian Vega, and Part V (Sections 20 to 23) was contributed by Adam Pound. Part V replaces a section of the 2004 article in which the motion of a small black hole was derived by the method of matched asymptotic expansions; this material can still be found in Ref. [142], but Pound’s work provides a much more satisfactory foundation for the gravitational self-force. The case study of Section 1.10 is new, and the “exact” formulation of the dynamics of a point mass in Section 19.1 is a major improvement from the original article. The concluding remarks of Section 24, contributed mostly by Adam Pound, are also updated from the 2004 article. The number of references has increased from 64 to 187.

MSC:

83C10 Equations of motion in general relativity and gravitational theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory

Citations:

Zbl 1071.83011

References:

[1] Akcay, S., ”Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime”, Phys. Rev. D, 83, 124026, (2011). [DOI], [arXiv:1012.5860]. (Cited on page 32.) · doi:10.1103/PhysRevD.83.124026
[2] Alvi, K., ”Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013, 1–19, (2000). [DOI], [arXiv:gr-qc/9912113]. (Cited on page 136.) · doi:10.1103/PhysRevD.61.124013
[3] Anderson, P.R., Eftekharzadeh, A. and Hu, B.L., ”Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion”, Phys. Rev. D, 73, 064023, (2006). [DOI], [arXiv:gr-qc/0507067]. (Cited on page 36.) · doi:10.1103/PhysRevD.73.064023
[4] Anderson, P.R. and Hu, B.L., ”Radiation reaction in Schwarzschild spacetime: Retarded Green’s function via Hadamard-WKB expansion”, Phys. Rev. D, 69, 064039, (2004). [DOI], [arXiv:gr-qc/0308034]. (Cited on page 36.) · doi:10.1103/PhysRevD.69.064039
[5] Anderson, W.G., Flanagan, É.É. and Ottewill, A.C., ”Quasilocal contribution to the gravitational self-force”, Phys. Rev. D, 71, 024036, (2005). [DOI], [arXiv:gr-qc/0412009]. (Cited on page 36.) · doi:10.1103/PhysRevD.71.024036
[6] Anderson, W.G. and Wiseman, A.G., ”A matched expansion approach to practical self-force calculations”, Class. Quantum Grav., 22, S783–S800, (2005). [DOI], [arXiv:gr-qc/0506136]. (Cited on page 36.) · Zbl 1076.83004 · doi:10.1088/0264-9381/22/15/010
[7] Barack, L., ”Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories”, Phys. Rev. D, 62, 084027, 1–21, (2000). [DOI], [arXiv:gr-qc/0005042]. (Cited on page 28.)
[8] Barack, L., ”Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021, 1–16, (2001). [DOI], [arXiv:gr-qc/0105040]. (Cited on page 28.)
[9] Barack, L., ”Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001, (2009). [DOI], [arXiv:0902.0573]. (Cited on pages 27 and 29.) · Zbl 1180.83001 · doi:10.1088/0264-9381/26/21/213001
[10] Barack, L. and Burko, L.M., ”Radiation-reaction force on a particle plunging into a black hole”, Phys. Rev. D, 62, 084040, 1–5, (2000). [DOI], [arXiv:gr-qc/0007033]. (Cited on page 32.)
[11] Barack, L., Damour, T. and Sago, N., ”Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism”, Phys. Rev. D, 82, 084036, (2010). [DOI], [arXiv:1008.0935]. (Cited on pages 32 and 40.) · doi:10.1103/PhysRevD.82.084036
[12] Barack, L. and Golbourn, D.A., ”Scalar-field perturbations from a particle orbiting a black hole using numerical evolution in 2+1 dimensions”, Phys. Rev. D, 76, 044020, (2007). [DOI], [arXiv:0705.3620]. (Cited on pages 34 and 36.) · doi:10.1103/PhysRevD.76.044020
[13] Barack, L., Golbourn, D.A. and Sago, N., ”m-mode regularization scheme for the self-force in Kerr spacetime”, Phys. Rev. D, 76, 124036, (2007). [DOI], [arXiv:0709.4588]. (Cited on pages 34 and 36.) · doi:10.1103/PhysRevD.76.124036
[14] Barack, L. and Lousto, C.O., ”Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502, 1–5, (2002). [DOI],[arXiv:gr-qc/0205043]. (Cited on page 39.)
[15] Barack, L., Mino, Y., Nakano, H., Ori, A. and Sasaki, M., ”Calculating the Gravitational Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101, 1–4, (2002). [DOI], [arXiv:gr-qc/0111001]. (Cited on pages 28 and 29.) · doi:10.1103/PhysRevLett.88.091101
[16] Barack, L. and Ori, A., ”Mode sum regularization approach for the self-force in black hole spacetime”, Phys. Rev. D, 61, 061502, 1–5, (2000). [DOI], [arXiv:gr-qc/9912010]. (Cited on page 28.) · doi:10.1103/PhysRevD.61.061502
[17] Barack, L. and Ori, A., ”Gravitational self-force and gauge transformations”, Phys. Rev. D, 64, 124003, 1–13, (2001). [DOI], [arXiv:gr-qc/0107056]. (Cited on pages 22, 32, 141, and 160.)
[18] Barack, L. and Ori, A., ”Regularization parameters for the self-force in Schwarzschild space-time: Scalar case”, Phys. Rev. D, 66, 084022, 1–15, (2002). [DOI], [arXiv:gr-qc/0204093]. (Cited on pages 28 and 29.)
[19] Barack, L. and Ori, A., ”Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”, Phys. Rev. Lett., 90, 111101, 1–4, (2003). [DOI], [arXiv:gr-qc/0212103]. (Cited on pages 28, 29, and 30.) · Zbl 1267.83015 · doi:10.1103/PhysRevLett.90.111101
[20] Barack, L. and Ori, A., ”Regularization parameters for the self-force in Schwarzschild space-time. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029, 1–11, (2003). [DOI], [arXiv:gr-qc/0209072]. (Cited on pages 28 and 29.) · doi:10.1103/PhysRevD.67.024029
[21] Barack, L. and Sago, N., ”Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole”, Phys. Rev. D, 75, 064021, (2007). [DOI], [arXiv:gr-qc/0701069]. (Cited on pages 32 and 34.) · doi:10.1103/PhysRevD.75.064021
[22] Barack, L. and Sago, N., ”Gravitational Self-Force Correction to the Innermost Stable Circular Orbit of a Schwarzschild Black Hole”, Phys. Rev. Lett., 102, 191101, (2009). [DOI], [arXiv:0902.0573]. (Cited on pages 32, 34, and 40.) · doi:10.1103/PhysRevLett.102.191101
[23] Barack, L. and Sago, N., ”Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole”, Phys. Rev. D, 81, 084021, (2010). [DOI], [arXiv:1002.2386]. (Cited on page 40.) · doi:10.1103/PhysRevD.81.084021
[24] Barack, L. and Sago, N., ”Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole”, Phys. Rev. D, 83, 084023, (2011). [DOI], [arXiv:1101.3331]. (Cited on page 41.) · doi:10.1103/PhysRevD.83.084023
[25] Barton, J.L., Lazar, D., Kennefick, D.J., Khanna, G. and Burko, L.M., ”Computational efficiency of frequency- and time-domain calculations of extreme mass-ratio binaries: Equatorial orbits”, Phys. Rev. D, 78, 064042, (2010). [arXiv:0804.1075]. (Cited on page 34.) · doi:10.1103/PhysRevD.78.064042
[26] Blanchet, L., ”Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [arXiv:gr-qc/0202016]. URL (accessed 25 August 2010): http://www.livingreviews.org/lrr-2006-4. (Cited on page 125.) · Zbl 1316.83004
[27] Blanchet, L. and Damour, T., ”Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430, (1986). (Cited on page 175.) · Zbl 0604.35073 · doi:10.1098/rsta.1986.0125
[28] Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., ”High-order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 084033, (2010). [arXiv:1002.0726]. (Cited on pages 32 and 40.) · doi:10.1103/PhysRevD.81.084033
[29] Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., ”Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 064004, (2010). [arXiv:0910.0207]. (Cited on pages 32 and 40.) · Zbl 1213.83083 · doi:10.1103/PhysRevD.81.064004
[30] Burko, L.M., ”Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84, 4529–4532, (2000). [DOI], [arXiv:gr-qc/0003074]. (Cited on page 32.) · doi:10.1103/PhysRevLett.84.4529
[31] Burko, L.M., ”Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav., 17, 227–250, (2000). [DOI], [arXiv:gr-qc/9911042]. (Cited on page 32.) · Zbl 0939.83026 · doi:10.1088/0264-9381/17/1/316
[32] Burko, L.M., ”The importance of conservative self forces for binaries undergoing radiation damping”, Int. J. Mod. Phys. A, 16, 1471–1479, (2001). [DOI]. (Cited on page 38.) · Zbl 0976.83016
[33] Burko, L.M., Harte, A.I. and Poisson, E., ”Mass loss by a scalar charge in an expanding universe”, Phys. Rev. D, 65, 124006, 1–11, (2002). [DOI], [arXiv:gr-qc/0201020]. (Cited on pages 29, 36, 39, and 90.) · doi:10.1103/PhysRevD.65.124006
[34] Burko, L. and Khanna, G., ”Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries”, Europhys. Lett., 78, 60005, (2007). [DOI], [arXiv:gr-qc/0609002]. (Cited on page 34.) · doi:10.1209/0295-5075/78/60005
[35] Burko, L.M. and Liu, Y.T., ”Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole”, Phys. Rev. D, 64, 024006, 1–21, (2001). [DOI], [arXiv:gr-qc/0103008]. (Cited on page 33.) · doi:10.1103/PhysRevD.64.024006
[36] Burko, L.M., Liu, Y.T. and Soen, Y., ”Self-force on charges in the spacetime of spherical shells”, Phys. Rev. D, 63, 024015, 1–18, (2001). [arXiv:gr-qc/0008065]. (Cited on page 32.)
[37] Canizares, P. and Sopuerta, C.F., ”Efficient pseudospectral method for the computation of the self-force on a charged particle: Circular geodesics around a Schwarzschild black hole”, Phys. Rev. D, 79, 084020, (2009). [arXiv:0903.0505]. (Cited on pages 32 and 34.) · doi:10.1103/PhysRevD.79.084020
[38] Canizares, P., Sopuerta, C.F. and Jaramillo, J.L., ”Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole”, Phys. Rev. D, 82, 044023, (2010). [DOI], [arXiv:1006.3201]. (Cited on page 34.) · doi:10.1103/PhysRevD.82.044023
[39] Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., ”Padé approximants of the Green function in spherically symmetric spacetimes”, Phys. Rev. D, 79, 124044, (2009). [DOI], [arXiv:0903.5319]. (Cited on page 36.) · doi:10.1103/PhysRevD.79.124044
[40] Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., ”Self-force calculations with matched expansions and quasinormal mode sums”, Phys. Rev. D, 79, 124043, (2009). [DOI], [arXiv:0903.0395]. (Cited on page 37.) · doi:10.1103/PhysRevD.79.124043
[41] Chrzanowski, P.L., ”Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042–2062, (1975). [DOI]. (Cited on page 33.) · doi:10.1103/PhysRevD.11.2042
[42] Cohen, J.M. and Kegeles, L.S., ”Electromagnetic fields in curved spaces: a constructive procedure”, Phys. Rev. D, 10, 1070–1084, (1974). [DOI]. (Cited on page 33.) · doi:10.1103/PhysRevD.10.1070
[43] Copson, E.T., ”On Electrostatics in a Gravitational Field”, Proc. R. Soc. London, Ser. A, 116, 720–735, (1928). (Cited on pages 24 and 29.) · JFM 54.0946.02
[44] Damour, T., ”Gravitational self-force in a Schwarzschild background and the effective one-body formalism”, Phys. Rev. D, 81, 024017, (2010). [DOI], [arXiv:0910.5533]. (Cited on pages 32 and 40.) · doi:10.1103/PhysRevD.81.024017
[45] Damour, T. and Iyer, B.R., ”Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259–3272, (1991). [DOI]. (Cited on pages 152 and 175.) · doi:10.1103/PhysRevD.43.3259
[46] D’Eath, P.D., ”Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11, 1387–1403, (1975). [DOI]. (Cited on pages 136 and 160.) · doi:10.1103/PhysRevD.11.1387
[47] D’Eath, P.D., Black Holes: Gravitational Interactions, (Clarendon Press; Oxford University Press, Oxford; New York, 1996). (Cited on pages 136 and 160.)
[48] Décanini, Y. and Folacci, A., ”Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the Feynman propagator”, Phys. Rev. D, 73, 044027, 1–38, (2006). [DOI], [arXiv:gr-qc/0511115]. (Cited on page 36.) · doi:10.1103/PhysRevD.73.044027
[49] Detweiler, S., ”Perspective on gravitational self-force analyses”, Class. Quantum Grav., 22, 681–716, (2005). [DOI], [arXiv:gr-qc/0501004]. (Cited on pages 27, 136, 143, and 169.) · Zbl 1086.83007 · doi:10.1088/0264-9381/22/15/006
[50] Detweiler, S., ”Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry”, Phys. Rev. D, 77, 124026, (2008). [DOI], [arXiv:gr-qc/0410011]. (Cited on pages 32 and 40.) · doi:10.1103/PhysRevD.77.124026
[51] Detweiler, S., Messaritaki, E. and Whiting, B.F., ”Self-force of a scalar field for circular orbits about a Schwarzschild black hole”, Phys. Rev. D, 67, 104016, (2003). [DOI], [arXiv:gr-qc/0205079]. (Cited on pages 28, 29, 30, and 32.) · doi:10.1103/PhysRevD.67.104016
[52] Detweiler, S. and Poisson, E., ”Low multipole contributions to the gravitational self-force”, Phys. Rev. D, 69, 084019, (2004). [DOI], [arXiv:gr-qc/0312010]. (Cited on page 34.) · doi:10.1103/PhysRevD.69.084019
[53] Detweiler, S. and Whiting, B.F., ”Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025, (2003). [DOI], [arXiv:gr-qc/0202086]. (Cited on pages 14, 15, 21, 26, 28, 88, and 134.) · doi:10.1103/PhysRevD.67.024025
[54] DeWitt, B.S. and Brehme, R.W., ”Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960). [DOI]. (Cited on pages 9, 19, 25, 26, 95, and 121.) · Zbl 0092.45003 · doi:10.1016/0003-4916(60)90030-0
[55] Diaz-Rivera, L.M., Messaritaki, E., Whiting, B.F. and Detweiler, S., ”Scalar field self-force effects on orbits about a Schwarzschild black hole, eccentric orbits”, Phys. Rev. D, 70, 124018, (2004). [DOI], [arXiv:gr-qc/0410011]. (Cited on page 40.) · doi:10.1103/PhysRevD.70.124018
[56] Dirac, P.A.M., ”Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167, 148, (1938). (Cited on pages 9, 11, and 111.) · Zbl 0023.42702 · doi:10.1098/rspa.1938.0124
[57] Dixon, W.G., ”Dynamics of extended bodies in general relativity. I. Momentum and angular momentum”, Proc. R. Soc. London, Ser. A, 314, 499–527, (1970). (Cited on pages 135 and 171.) · doi:10.1098/rspa.1970.0020
[58] Dixon, W.G., ”Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector”, Proc. R. Soc. London, Ser. A, 319, 509–547, (1970). (Cited on pages 135 and 171.) · doi:10.1098/rspa.1970.0191
[59] Dixon, W.G., ”Dynamics of Extended Bodies in General Relativity. III. Equations of Motion”, Philos. Trans. R. Soc. London, Ser. A, 277, 59–119, (1974). (Cited on pages 135 and 171.) · doi:10.1098/rsta.1974.0046
[60] Dolan, S. and Barack, L., ”Self-force via m-mode regularization and 2+1D evolution: Foundations and a scalar-field implementation on Schwarzschild spacetime”, Phys. Rev. D, 83, 124019, (2011). [DOI], [arXiv:1010.5255]. (Cited on pages 34 and 36.) · doi:10.1103/PhysRevD.83.024019
[61] Drasco, S., Flanagan, É.É. and Hughes, S.A., ”Computing inspirals in Kerr in the adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801–S846, (2005). [DOI], [arXiv:gr-qc/0505075]. (Cited on pages 37 and 38.) · Zbl 1080.83007 · doi:10.1088/0264-9381/22/15/011
[62] Drasco, S. and Hughes, S.A., ”Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027, (2006). [DOI], [arXiv:gr-qc/0509101]. (Cited on pages 37 and 38.) · doi:10.1103/PhysRevD.73.024027
[63] Eckhaus, W., Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and its Applications, 9, (North-Holland, Amsterdam; New York, 1979). [Google Books]. (Cited on pages 127 and 137.) · Zbl 0421.34057
[64] Ehlers, J. and Geroch, R., ”Equation of motion of small bodies in relativity”, Ann. Phys. (N.Y.), 309, 232–236, (2004). [DOI], [arXiv:gr-qc/0309074]. (Cited on page 135.) · Zbl 1036.83004 · doi:10.1016/j.aop.2003.08.020
[65] Ehlers, J. and Rudolph, E., ”Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity”, Gen. Relativ. Gravit., 8, 197–217, (1977). [DOI]. (Cited on page 138.) · Zbl 0387.70013 · doi:10.1007/BF00763547
[66] Einstein, A. and Infeld, L., ”On the motion of particles in general relativity theory”, Can. J. Math., 1, 209, (1949). [DOI]. (Cited on page 138.) · Zbl 0033.42501 · doi:10.4153/CJM-1949-020-8
[67] Field, S.E., Hesthaven, J.S. and Lau, S.R., ”Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries”, Class. Quantum Grav., 26, 165010, (2009). [DOI], [arXiv:0902.1287]. (Cited on page 34.) · Zbl 1173.83010 · doi:10.1088/0264-9381/26/16/165010
[68] Field, S.E., Hesthaven, J.S. and Lau, S.R., ”Persistent junk solutions in time-domain modeling of extreme mass ratio binaries”, Phys. Rev. D, 81, 124030, (2010). [DOI], [arXiv:1001.2578]. (Cited on page 34.) · doi:10.1103/PhysRevD.81.124030
[69] Flanagan, É.É. and Hinderer, T., ”Transient resonances in the inspirals of point particles into black holes”, arXiv, e-print, (2010). [arXiv:1009.4923 [gr-qc]]. (Cited on pages 38 and 171.)
[70] Flanagan, É.É. and Wald, R.M., ”Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). [DOI], [arXiv:gr-qc/9602052]. (Cited on pages 11 and 112.) · doi:10.1103/PhysRevD.54.6233
[71] Friedlander, F.G., The wave equat on on a curved space-time, Cambridge Monographs on Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1975). [Google Books]. (Cited on page 26.)
[72] Fukumoto, T., Futamase, T. and Itoh, Y., ”On the equation of motion for a fast moving small object using the strong field point particle limit”, Prog. Theor. Phys., 116, 423–428, (2006). [DOI], [arXiv:gr-qc/0606114]. (Cited on pages 160, 169, and 170.) · Zbl 1112.83012 · doi:10.1143/PTP.116.423
[73] Futamase, T., Hogan, P.A. and Itoh, Y., ”Equations of Motion in General Relativity of a Small Charged Black Hole”, Phys. Rev. D, 78, 104014, (2008). [arXiv:0811.4020]. (Cited on page 137.) · doi:10.1103/PhysRevD.78.104014
[74] Futamase, T. and Itoh, Y., ”The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 25 August 2010): http://www.livingreviews.org/lrr-2007-2. (Cited on pages 135, 136, 166, 168, and 169.) · Zbl 1255.83005
[75] Galley, C.R. and Hu, B.L., ”Self-force on extreme mass ratio inspirals via curved spacetime effective field theory”, Phys. Rev. D, 79, 064002, (2009). [DOI], [arXiv:0801.0900]. (Cited on pages 135 and 171.) · doi:10.1103/PhysRevD.79.064002
[76] Galley, C.R., Hu, B.L. and Lin, S.-Y., ”Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space”, Phys. Rev. D, 74, 024017, (2006). [DOI], [arXiv:gr-qc/0603099]. (Cited on page 135.) · doi:10.1103/PhysRevD.74.024017
[77] Gal’tsov, D.V., ”Radiation reaction in the Kerr gravitational field”, J. Phys. A: Math. Gen., 15, 3737–3749, (1982). [DOI]. (Cited on page 37.) · doi:10.1088/0305-4470/15/12/025
[78] Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., ”Adiabatic evolution of three ’constants’ of motion for greatly inclined orbits in Kerr spacetime”, Prog. Theor. Phys., 117, 1041–1066, (2007). [DOI], [arXiv:gr-qc/0702054]. (Cited on pages 37 and 38.) · Zbl 1131.82309 · doi:10.1143/PTP.117.1041
[79] Geroch, R. and Jang, P.S., ”Motion of a body in general relativity”, J. Math. Phys., 16, 65–67, (1975). [DOI]. (Cited on page 135.) · doi:10.1063/1.522416
[80] Geroch, R. and Traschen, J., ”Strings and other distributional sources in general relativity”, Phys. Rev. D, 36, 1017–1031, (1987). [DOI]. (Cited on pages 122 and 135.) · doi:10.1103/PhysRevD.36.1017
[81] Gralla, S.E., ”Comments on First and Second Order Gravitational Self-Force”, Presentation at the 12th Capra Meeting on Radiation Reaction, conference paper, (2009). (Cited on page 160.)
[82] Gralla, S.E., Harte, A.I. and Wald, R.M., ”A Rigorous Derivation of Electromagnetic Self-force”, Phys. Rev. D, 80, 024031, (2009). [DOI], [arXiv:0905.2391]. (Cited on pages 9, 136, 137, and 165.) · doi:10.1103/PhysRevD.80.024031
[83] Gralla, S.E. and Wald, R.M., ”A Rigorous Derivation of Gravitational Self-force”, Class. Quantum Grav., 25, 205009, (2008). [DOI], [arXiv:0806.3293]. (Cited on pages 22, 127, 134, 136, 138, 143, 156, 160, 161, 167, and 169.) · Zbl 1152.83405 · doi:10.1088/0264-9381/25/20/205009
[84] Haas, R., ”Scalar self-force on eccentric geodesics in Schwarzschild spacetime: a time-domain computation”, Phys. Rev. D, 75, 124011, (2007). [DOI], [arXiv:0704.0797]. (Cited on pages 32 and 34.) · doi:10.1103/PhysRevD.75.124011
[85] Haas, R., Self-force on point particles in orbit around a Schwarzschild black hole, Ph.D. Thesis, (University of Guelph, Guelph, 2008). [ADS]. (Cited on pages 32 and 34.)
[86] Haas, R. and Poisson, E., ”Mass change and motion of a scalar charge in cosmological space-times”, Class. Quantum Grav., 22, S739–S752, (2005). [DOI], [arXiv:gr-qc/0411108]. (Cited on pages 29, 36, 39, and 90.) · Zbl 1075.83557 · doi:10.1088/0264-9381/22/15/008
[87] Haas, R. and Poisson, E., ”Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field”, Phys. Rev. D, 74, 004009, (2006). [DOI], [arXiv:gr-qc/0605077]. (Cited on pages 30 and 32.) · doi:10.1103/PhysRevD.74.044009
[88] Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (Yale University Press, New Haven, CT, 1923). [Google Books]. Online version (accessed 3 February 2011): http://www.archive.org/details/lecturesoncauchy00hadauoft. (Cited on page 26.) · JFM 49.0725.04
[89] Harte, A.I., ”Self-forces from generalized Killing fields”, Class. Quantum Grav., 25, 235020, (2008). [DOI], [arXiv:0807.1150]. (Cited on pages 135, 158, and 169.) · Zbl 1155.83008 · doi:10.1088/0264-9381/25/23/235020
[90] Harte, A.I., ”Electromagnetic self-forces and generalized Killing fields”, Class. Quantum Grav., 26, 155015, (2009). [DOI], [arXiv:0903.0167]. (Cited on pages 135, 158, and 169.) · Zbl 1172.83311 · doi:10.1088/0264-9381/26/15/155015
[91] Harte, A.I., ”Effective stress-energy tensors, self-force, and broken symmetry”, Class. Quantum Grav., 27, 135002, (2010). [DOI], [arXiv:0910.4614]. (Cited on pages 158 and 169.) · Zbl 1255.83027 · doi:10.1088/0264-9381/27/13/135002
[92] Havas, P., ”Radiation Damping in General Relativity”, Phys. Rev., 108(5), 1351–1352, (1957). [DOI]. (Cited on pages 128 and 156.) · doi:10.1103/PhysRev.108.1351
[93] Havas, P. and Goldberg, J.N., ”Lorentz-Invariant Equations of Motion of Point Masses in the General Theory of Relativity”, Phys. Rev., 128(1), 398–414, (1962). [DOI]. (Cited on pages 128 and 156.) · Zbl 0111.42104 · doi:10.1103/PhysRev.128.398
[94] Hinderer, T. and Flanagan, É.É., ”Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion”, Phys. Rev. D, 78, 064028, (2008). [DOI], [arXiv:0805.3337]. (Cited on pages 37, 38, 170, and 171.) · doi:10.1103/PhysRevD.78.064028
[95] Hobbs, J.M., ”A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141–165, (1968). (Cited on pages 9, 19, and 121.) · doi:10.1016/0003-4916(68)90231-5
[96] Holmes, M.H., Introduction to Perturbation Methods, Texts in Applied Mathematics, 20, (Springer, Berlin; New York, 1995). [Google Books]. (Cited on pages 127 and 137.) · Zbl 0830.34001
[97] Huerta, E.A. and Gair, J.R., ”Influence of conservative corrections on parameter estimation for EMRIs”, Phys. Rev. D, 79, 084021, (2009). [DOI], [arXiv:0812.4208]. (Cited on page 38.) · doi:10.1103/PhysRevD.79.084021
[98] Hughes, S., ”Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission”, Phys. Rev. D, 61, 084004, (2000). [DOI], [arXiv:gr-qc/9910091]. (Cited on page 37.) · doi:10.1103/PhysRevD.61.084004
[99] Hughes, S., Drasco, S., Flanagan, É.É. and Franklin, J., ”Gravitational radiation reaction and inspiral waveforms in the adiabatic limit”, Phys. Rev. Lett., 94, 221101, (2005). [DOI], [arXiv:gr-qc/0504015]. (Cited on page 38.) · doi:10.1103/PhysRevLett.94.221101
[100] Infeld, L. and Schild, A., ”On the Motion of Test Particles in General Relativity”, Rev. Mod. Phys., 21, 408–413, (1949). [DOI]. (Cited on page 135.) · Zbl 0036.42604 · doi:10.1103/RevModPhys.21.408
[101] Jackson, J.D., Classical Electrodynamics, (Wiley, New York, 1999), 3rd edition. (Cited on pages 9, 10, and 111.)
[102] Kates, R.E., ”Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980). [DOI]. (Cited on pages 136 and 143.) · doi:10.1103/PhysRevD.22.1853
[103] Kates, R.E., ”Motion of an electrically or magnetically charged body with possibly strong internal gravity through external electromagnetic and gravitational fields”, Phys. Rev. D, 22, 1879–1881, (1980). [DOI]. (Cited on page 136.) · doi:10.1103/PhysRevD.22.1879
[104] Kates, R.E., ”Underlying structure of singular perturbations on manifolds”, Ann. Phys. (N.Y.), 132, 1–17, (1981). [DOI]. (Cited on page 137.) · Zbl 0475.58023 · doi:10.1016/0003-4916(81)90265-7
[105] Kegeles, L.S. and Cohen, J.M., ”Constructive procedure for perturbations of spacetimes”, Phys. Rev. D, 19, 1641–1664, (1979). [DOI]. (Cited on page 33.) · doi:10.1103/PhysRevD.19.1641
[106] Keidl, T., Self-force for extreme mass ratio inspiral, Ph.D. Thesis, (University of Wisconsin-Milwaukee, Milwaukee, 2008). [ADS]. (Cited on page 33.)
[107] Keidl, T.S., Friedman, J.L. and Wiseman, A.G., ”Finding fields and self-force in a gauge appropriate to separable wave equations”, Phys. Rev. D, 75, 124009, (2006). [arXiv:gr-qc/0611072]. (Cited on page 33.) · doi:10.1103/PhysRevD.75.124009
[108] Keidl, T.S., Shah, A.G., Friedman, J.L., Kim, D.H. and Price, L.R., ”Gravitational self-force in a radiation gauge”, Phys. Rev. D, 82, 124012, (2010). [DOI], [arXiv:1004.2276]. (Cited on page 33.) · doi:10.1103/PhysRevD.82.124012
[109] Kevorkian, J. and Cole, J.D., Multiple Scale and Singular Perturbation Methods, Applied Mathematical Sciences, 114, (Springer, New York, 1996). [Google Books]. (Cited on pages 38, 127, and 137.) · Zbl 0846.34001
[110] Khanna, G., ”Teukolsky evolution of particle orbits around Kerr black holes in the time domain: Elliptic and inclined orbits”, Phys. Rev. D, 69, 024016, (2006). [arXiv:gr-qc/0309107]. (Cited on page 34.) · doi:10.1103/PhysRevD.69.024016
[111] Lagerstrom, P.A., Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, 76, (Springer, New York, 1988). (Cited on pages 127 and 137.) · Zbl 0666.34064
[112] Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, Course of Theoretical Physics, 2, (Pergamon Press, Oxford; New York, 1975), 4th edition. [Google Books]. (Cited on pages 11 and 112.)
[113] Leaute, B. and Linet, B., ”Electrostatics in a Reissner-Nordström space-time”, Phys. Lett. A, 58, 5–6, (1976). [DOI]. (Cited on page 24.) · doi:10.1016/0375-9601(76)90529-6
[114] Linet, B., ”Electrostatics and magnetostatics in Schwarzschild metric”, J. Phys. A: Math. Gen., 9, 1081–1087, (1976). [DOI]. (Cited on pages 24 and 29.) · doi:10.1088/0305-4470/9/7/010
[115] ”LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL (accessed 2 April 2004): http://lisa.jpl.nasa.gov/. (Cited on page 22.)
[116] Lopez-Aleman, R., Khanna, G. and Pullin, J., ”Perturbative evolution of particle orbits around Kerr black holes: time domain calculation”, Class. Quantum Grav., 20, 3259–3268, (2003). [DOI], [arXiv:gr-qc/0303054]. (Cited on page 34.) · Zbl 1047.83022 · doi:10.1088/0264-9381/20/14/320
[117] Lousto, C.O., ”Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes”, Phys. Rev. Lett., 84, 5251–5254, (2000). [DOI], [arXiv:gr-qc/9912017]. (Cited on page 28.) · doi:10.1103/PhysRevLett.84.5251
[118] Lousto, C.O., ed., Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach, Class. Quantum Grav., 22, (IOP Publishing, Bristol, 2005). (Cited on page 27.) · Zbl 1078.83501
[119] Lousto, C.O. and Nakano, H., ”A new method to integrate (2+1)-wave equations with Dirac’s delta functions as sources”, Class. Quantum Grav., 25, 145018, (2008). [DOI], [arXiv:0802.4277]. (Cited on page 36.) · Zbl 1180.35323 · doi:10.1088/0264-9381/25/14/145018
[120] Lousto, C.O. and Price, R.H., ”Understanding initial data for black hole collisions”, Phys. Rev. D, 56, 6439–6457, (1997). [DOI], [arXiv:gr-qc/9705071]. (Cited on page 34.) · doi:10.1103/PhysRevD.56.6439
[121] Lousto, C.O. and Whiting, B.F., ”Reconstruction of black hole metric perturbations from the Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). [DOI], [arXiv:gr-qc/0203061]. (Cited on page 33.) · doi:10.1103/PhysRevD.66.024026
[122] Manasse, F.K. and Misner, C.W., ”Fermi normal coordinates and some basic concepts in differential geometry”, J. Math. Phys., 4, 735–745, (1963). [DOI]. (Cited on page 25.) · Zbl 0118.22903 · doi:10.1063/1.1724316
[123] Martel, K. and Poisson, E., ”One-parameter family of time-symmetric initial data for the radial infall of a particle into a Schwarzschild black hole”, Phys. Rev. D, 66, 084001, (2002). [DOI], [arXiv:gr-qc/0107104]. (Cited on page 34.) · doi:10.1103/PhysRevD.66.084001
[124] Mino, Y., ”Perturbative approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027, 1–17, (2003). [DOI], [arXiv:gr-qc/0302075]. (Cited on page 37.) · doi:10.1103/PhysRevD.67.084027
[125] Mino, Y., ”Self-force in the radiation reaction formula – adiabatic approximation of a metric perturbation and an orbit”, Prog. Theor. Phys., 113, 733–761, (2005). [arXiv:gr-qc/0506003]. (Cited on page 37.) · Zbl 1082.83012 · doi:10.1143/PTP.113.733
[126] Mino, Y., ”Adiabatic expansion for a metric perturbation and the condition to solve the gauge problem for gravitational radiation reaction problem”, Prog. Theor. Phys., 115, 43–61, (2006). [DOI], [arXiv:gr-qc/0601019]. (Cited on page 37.) · Zbl 1192.83088 · doi:10.1143/PTP.115.43
[127] Mino, Y., Nakano, H. and Sasaki, M., ”Covariant Self-Force Regularization of a Particle Orbiting a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor. Phys., 108, 1039–1064, (2003). [arXiv:gr-qc/0111074]. (Cited on pages 28 and 29.) · Zbl 1040.83024 · doi:10.1143/PTP.108.1039
[128] Mino, Y. and Price, R., ”Two-timescale adiabatic expansion of a scalar field model”, Phys. Rev. D, 77, 064001, (2008). [DOI], [arXiv:0801.0179]. (Cited on page 37.) · doi:10.1103/PhysRevD.77.064001
[129] Mino, Y., Sasaki, M. and Tanaka, T., ”Gravitational radiation reaction”, Prog. Theor. Phys. Suppl., 128, 373–406, (1997). [DOI], [arXiv:gr-qc/9712056]. (Cited on page 136.) · doi:10.1143/PTPS.128.373
[130] Mino, Y., Sasaki, M. and Tanaka, T., ”Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457–3476, (1997). [DOI], [arXiv:gr-qc/9606018]. (Cited on pages 9, 21, 22, 134, 136, 143, 167, and 169.) · doi:10.1103/PhysRevD.55.3457
[131] Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). (Cited on pages 25 and 26.)
[132] Morette-DeWitt, C. and DeWitt, B.S., ”Falling charges”, Physics, 1, 3–20, (1964). (Cited on pages 27 and 36.)
[133] Morette-DeWitt, C. and Ging, J.L., ”Freinage dû a la radiation gravitationnelle”, C. R. Hebd. Seanc. Acad. Sci., 251, 1868, (1960). (Cited on page 134.) · Zbl 0091.43904
[134] Ori, A., ”Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010, 1–19, (2003). [DOI], [arXiv:gr-qc/0207045]. (Cited on page 33.) · doi:10.1103/PhysRevD.67.124010
[135] Ori, A. and Thorne, K.S., ”Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole”, Phys. Rev. D, 62, 124022, (2000). [DOI], [arXiv:gr-qc/0003032]. (Cited on page 40.) · doi:10.1103/PhysRevD.62.124022
[136] Ottewill, A.C. and Wardell, B., ”Quasilocal contribution to the scalar self-force: Geodesic motion”, Phys. Rev. D, 77, 104002, (2008). [DOI], [arXiv:0711.2469]. (Cited on page 36.) · Zbl 1222.83034 · doi:10.1103/PhysRevD.77.104002
[137] Ottewill, A.C. and Wardell, B., ”Quasilocal contribution to the scalar self-force: Nongeodesic motion”, Phys. Rev. D, 79, 024031, (2009). [DOI], [arXiv:0810.1961]. (Cited on page 36.) · Zbl 1222.83034 · doi:10.1103/PhysRevD.79.024031
[138] Papapetrou, A., ”Spinning Test-Particles in General Relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248–258, (1951). [DOI], [ADS]. (Cited on pages 143 and 150.) · Zbl 0044.22801 · doi:10.1098/rspa.1951.0200
[139] Peters, P.C., ”Gravitational radiation and the motion of two point masses”, Phys. Rev., 136, B1224–B1232, (1964). [DOI]. (Cited on page 37.) · doi:10.1103/PhysRev.136.B1224
[140] Peters, P.C. and Mathews, J., ”Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev., 131, 435–440, (1963). [DOI]. (Cited on page 37.) · Zbl 0114.43902 · doi:10.1103/PhysRev.131.435
[141] Pfenning, M.J. and Poisson, E., ”Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes”, Phys. Rev. D, 65, 084001, 1–30, (2002). [DOI], [arXiv:gr-qc/0012057]. (Cited on pages 27 and 36.) · doi:10.1103/PhysRevD.65.084001
[142] Poisson, E., ”Retarded coordinates based at a world line and the motion of a small black hole in an external universe”, Phys. Rev. D, 69, 084007, (2004). [DOI], [arXiv:gr-qc/0311026]. (Cited on pages 3, 22, 136, 143, and 169.) · doi:10.1103/PhysRevD.69.084007
[143] Pound, A., Motion of small bodies in general relativity: foundations and implementations of the self-force, Ph.D. Thesis, (University of Guelph, Guelph, 2010). [arXiv:1006.3903]. (Cited on pages 38, 136, and 168.)
[144] Pound, A., ”Self-consistent gravitational self-force”, Phys. Rev. D, 81, 024023, (2010). [DOI], [arXiv:0907.5197]. (Cited on pages 22, 99, 134, 136, 138, 139, 142, 143, 160, 166, 167, and 168.) · doi:10.1103/PhysRevD.81.024023
[145] Pound, A., ”Singular perturbation techniques in the gravitational self-force problem”, Phys. Rev. D, 81, 124009, (2010). [DOI], [arXiv:1003.3954]. (Cited on pages 22, 38, 127, 136, 137, 141, 143, 160, 168, 169, and 171.) · doi:10.1103/PhysRevD.81.124009
[146] Pound, A. and Poisson, E., ”Multi-scale analysis of the electromagnetic self-force in a weak gravitational field”, Phys. Rev. D, 77, 044012, (2008). [DOI], [arXiv:0708.3037]. (Cited on page 38.) · doi:10.1103/PhysRevD.77.044012
[147] Pound, A. and Poisson, E., ”Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals”, Phys. Rev. D, 77, 044013, (2008). [DOI], [arXiv:0708.3033]. (Cited on page 38.) · doi:10.1103/PhysRevD.77.044013
[148] Pound, A., Poisson, E. and Nickel, B.G., ”Limitations of the adiabatic approximation to the gravitational self-force”, Phys. Rev. D, 72, 124001, (2005). [DOI], [arXiv:gr-qc/0509122]. (Cited on page 38.) · doi:10.1103/PhysRevD.72.124001
[149] Quinn, T.C., ”Axiomatic approach to radiation reaction of scalar point particles in curved spacetime”, Phys. Rev. D, 62, 064029, 1–9, (2000). [DOI], [arXiv:gr-qc/0005030]. (Cited on pages 9, 20, and 112.)
[150] Quinn, T.C. and Wald, R.M., ”An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). [DOI], [arXiv:gr-qc/9610053]. (Cited on pages 9, 11, 21, 26, 121, 128, 134, 156, 166, and 167.) · doi:10.1103/PhysRevD.56.3381
[151] Quinn, T.C. and Wald, R.M., ”Energy conservation for point particles undergoing radiation reaction”, Phys. Rev. D, 60, 064009, 1–20, (1999). [DOI], [arXiv:gr-qc/9903014]. (Cited on pages 121 and 134.) · doi:10.1103/PhysRevD.60.064009
[152] Racine, E. and Flanagan, É.É., ”Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies”, Phys. Rev. D, 71, 044010, (2005). [DOI], [arXiv:gr-qc/0404101]. (Cited on pages 138 and 169.) · doi:10.1103/PhysRevD.71.044010
[153] Roach, G.F., Green’s Functions, (Cambridge University Press, Cambridge; New York, 1982), 2nd edition. [Google Books]. (Cited on page 140.) · Zbl 0478.34001
[154] Rohrlich, F., Classical Charged Particles, (World Scientific, Singapore; Hackensack, NJ, 2007), 3rd edition. [Google Books]. (Cited on page 9.) · Zbl 1187.78001
[155] Rosenthal, E., ”Construction of the second-order gravitational perturbations produced by a compact object”, Phys. Rev. D, 73, 044034, (2006). [DOI], [arXiv:gr-qc/0602066]. (Cited on pages 160 and 170.) · doi:10.1103/PhysRevD.73.044034
[156] Rosenthal, E., ”Second-order gravitational self-force”, Phys. Rev. D, 74, 084018, (2006). [DOI], [arXiv:gr-qc/0609069]. (Cited on page 170.) · doi:10.1103/PhysRevD.74.084018
[157] Sago, N., Barack, L. and Detweiler, S., ”Two approaches for the gravitational self force in black hole spacetime: Comparison of numerical results”, Phys. Rev. D, 78, 124024, (2008). [DOI], [arXiv:0810.2530]. (Cited on page 32.) · doi:10.1103/PhysRevD.78.124024
[158] Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., ”Adiabatic evolution of orbital parameters in the Kerr spacetime”, Prog. Theor. Phys., 115, 873–907, (2006). [DOI], [arXiv:gr-qc/0511151]. (Cited on pages 37 and 38.) · Zbl 1114.83009 · doi:10.1143/PTP.115.873
[159] Sago, N., Tanaka, T., Hikida, W. and Nakano, H., ”Adiabatic radiation reaction to orbits in Kerr spacetime”, Prog. Theor. Phys., 114, 509–514, (2005). [DOI], [arXiv:gr-qc/0506092]. (Cited on pages 37 and 38.) · Zbl 1078.83026 · doi:10.1143/PTP.114.509
[160] Schattner, R., ”The center of mass in general relativity”, Gen. Relativ. Gravit., 10, 377–393, (1979). (Cited on page 138.) · doi:10.1007/BF00760221
[161] Sciama, D.W., Waylen, P.C. and Gilman, R.C., ”Generally Covariant Integral Formulation of Einstein’s Field Equations”, Phys. Rev., 187, 1762–1766, (1969). [DOI]. (Cited on page 97.) · Zbl 0186.28703 · doi:10.1103/PhysRev.187.1762
[162] Shankar, K. and Whiting, B.F., ”Self-force of a static electric charge near a Schwarzschild star”, Phys. Rev. D, 76, 124027, (2007). [DOI], [arXiv:0707.0042]. (Cited on page 29.) · doi:10.1103/PhysRevD.76.124027
[163] Smith, A.G. and Will, C.M., ”Force on a static charge outside a Schwarzschild black hole”, Phys. Rev. D, 22, 1276–1284, (1980). [DOI]. (Cited on pages 23, 25, and 27.) · doi:10.1103/PhysRevD.22.1276
[164] Steinbauer, R. and Vickers, J.A., ”The use of Generalised Functions and Distributions in General Relativity”, Class. Quantum Grav., 23, R91–R114, (2006). [DOI], [arXiv:gr-qc/0603078]. (Cited on page 135.) · Zbl 1096.83001 · doi:10.1088/0264-9381/23/10/R01
[165] Steinhoff, J. and Puetzfeld, D., ”Multipolar equations of motion for extended test bodies in General Relativity”, Phys. Rev. D, 81, 044019, (2010). [DOI], [arXiv:0909.3756]. (Cited on page 171.) · doi:10.1103/PhysRevD.81.044019
[166] Stewart, J.M., ”Hertz-Bromwich-Debye-Whittaker-Penrose potentials in general relativity”, Proc. R. Soc. London, Ser. A, 367, 527–538, (1979). (Cited on page 33.) · doi:10.1098/rspa.1979.0101
[167] Sundararajan, P., ”Transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits”, Phys. Rev. D, 77, 124050, (2008). [DOI], [arXiv:0803.4482]. (Cited on page 40.) · doi:10.1103/PhysRevD.77.124050
[168] Sundararajan, P., Khanna, G. and Hughes, S.A., ”Towards adiabatic waveforms for inspiral into Kerr black holes: I. A new model of the source for the time domain perturbation equation”, Phys. Rev. D, 76, 104005, (2007). [DOI], [arXiv:gr-qc/0703028]. (Cited on page 34.) · doi:10.1103/PhysRevD.76.104005
[169] Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, 1960). (Cited on pages 16, 25, and 26.) · Zbl 0090.18504
[170] Taylor, S. and Poisson, E., ”Nonrotating black hole in a post-Newtonian tidal environment”, Phys. Rev. D, 78, 084016, (2008). [DOI], [arXiv:0806.3052]. (Cited on pages 136 and 143.) · doi:10.1103/PhysRevD.78.084016
[171] Teitelboim, C., Villarroel, D. and van Weert, C.G., ”Classical electrodynamics of retarded fields and point particles”, Riv. Nuovo Cimento, 3, 9, (1980). [DOI]. (Cited on page 9.)
[172] Teukolsky, S.A., ”Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [DOI], [ADS]. (Cited on page 33.) · doi:10.1086/152444
[173] Thorne, K.S., ”Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980). [DOI], [ADS]. (Cited on page 138.) · doi:10.1103/RevModPhys.52.299
[174] Thorne, K.S. and Hartle, J.B., ”Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985). [DOI]. (Cited on pages 59, 136, and 138.) · doi:10.1103/PhysRevD.31.1815
[175] Vega, I., The dynamics of point particles around black holes, Ph.D. Thesis, (University of Florida, Gainesville, 2009). (Cited on page 34.)
[176] Vega, I. and Detweiler, S., ”Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application”, Phys. Rev. D, 77, 084008, (2008). [DOI], [arXiv:0712.4405]. (Cited on pages 34 and 36.) · doi:10.1103/PhysRevD.77.084008
[177] Vega, I., Diener, P., Tichy, W. and Detweiler, S., ”Self-force with (3+1) codes: a primer for numerical relativists”, Phys. Rev. D, 80, 084021, (2009). [DOI], [arXiv:0908.2138]. (Cited on pages 34 and 36.) · doi:10.1103/PhysRevD.80.084021
[178] Verhulst, F., Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Texts in Applied Mathematics, 50, (Springer, New York, 2005). [Google Books]. (Cited on pages 127 and 137.) · Zbl 1148.35006
[179] Wald, R.M., ”Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206, (1978). [DOI]. (Cited on page 33.) · doi:10.1103/PhysRevLett.41.203
[180] Walker, M. and Will, C.M., ”The approximation of radiative effects in relativistic gravity –Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J. Lett., 242, L129–L133, (1980). [DOI]. (Cited on page 125.) · doi:10.1086/183417
[181] Warburton, N. and Barack, L., ”Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits”, Phys. Rev. D, 81, 084039, (2010). [DOI], [arXiv:1003.1860]. (Cited on page 33.) · doi:10.1103/PhysRevD.81.084039
[182] Wardell, B., Green Functions and Radiation Reaction From a Spacetime Perspective, Ph.D. Thesis, (University College Dublin, Dublin, 2009). [arXiv:0910.2634]. (Cited on page 36.)
[183] Whiting, B.F., ”Identifying the singular field for self-force evaluation”, Class. Quantum Grav., 22, S661–S679, (2005). [DOI]. (Cited on page 27.) · Zbl 1075.83509 · doi:10.1088/0264-9381/22/15/005
[184] Whiting, B.F. and Price, L.P., ”Metric reconstruction from Weyl scalars”, Class. Quantum Grav., 22, S589–S604, (2005). [DOI]. (Cited on page 33.) · Zbl 1080.83016 · doi:10.1088/0264-9381/22/15/003
[185] Wiseman, A.G., ”Self-force on a static scalar test charge outside a Schwarzschild black hole”, Phys. Rev. D, 61, 084014, 1–14, (2000). [DOI], [arXiv:gr-qc/0001025]. (Cited on pages 25 and 28.) · doi:10.1103/PhysRevD.61.084014
[186] Zel’nikov, A.I and Frolov, V.P., ”Influence of gravitation on the self-energy of charged particles”, Sov. Phys. JETP, 55, 919–198, (1982). (Cited on pages 23 and 28.)
[187] Zhang, X.-H., ”Multipole expansions of the general-relativistic gravitational field of the external universe”, Phys. Rev. D, 34, 991–1004, (1986). [DOI]. (Cited on page 59.) · doi:10.1103/PhysRevD.34.991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.