×

The homological torsion of \(\mathrm{PSL}_2\) of the imaginary quadratic integers. (English) Zbl 1307.11065

Summary: The Bianchi groups are the groups \(\mathrm{(P)SL}_2\) over a ring of integers in an imaginary quadratic number field. We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We expose a novel technique, the torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups. Furthermore, this correspondence facilitates the computation of the equivariant \(K\)-homology of the Bianchi groups. By the Baum/Connes conjecture, which is satisfied by the Bianchi groups, we obtain the \(K\)-theory of their reduced \(C^\ast\)-algebras in terms of isomorphic images of their equivariant \(K\)-homology.

MSC:

11F75 Cohomology of arithmetic groups
22E40 Discrete subgroups of Lie groups
57S30 Discontinuous groups of transformations
55N91 Equivariant homology and cohomology in algebraic topology
19L47 Equivariant \(K\)-theory
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology

Software:

Bianchi.gp; PARI/GP

References:

[1] Alejandro Adem and R. James Milgram, Cohomology of finite groups, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 2004. · Zbl 1061.20044
[2] Bill Allombert, Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen, Francisco Diaz y Diaz, Yves Eichenlaub, Xavier Gourdon, Louis Granboulan, Bruno Haible, Guillaume Hanrot, Pascal Letard, Gerhard Niklasch, Michel Olivier, Thomas Papanikolaou, Xavier Roblot, Denis Simon, Emmanuel Tollis, Ilya Zakharevitch, and the PARI group, PARI/GP, version 2.4.3, specialized computer algebra system, Bordeaux, 2010, http://pari.math.u-bordeaux.fr/.
[3] Maria T. Aranés, Modular symbols over number fields, Ph.D. Thesis, 2010.
[4] Avner Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225 (1977), no. 1, 69 – 76. · Zbl 0343.20026 · doi:10.1007/BF01364892
[5] Ethan Berkove, The mod-2 cohomology of the Bianchi groups, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4585 – 4602. · Zbl 1010.20031
[6] Luigi Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann. 40 (1892), no. 3, 332 – 412 (Italian). · JFM 24.0188.02 · doi:10.1007/BF01443558
[7] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[8] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. · Zbl 0584.20036
[9] Jeremy Bygott, Modular forms and modular symbols over imaginary quadratic fields, Ph.D. Thesis, University of Exeter, 1999, http://www.warwick.ac.uk/staff/J.E.Cremona/theses/bygott.pdf.
[10] J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math. 16 (2007), no. 3, 303 – 312. · Zbl 1149.11028
[11] J. E. Cremona and E. Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields, Math. Comp. 62 (1994), no. 205, 407 – 429. · Zbl 0798.11015
[12] J. E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275 – 324. · Zbl 0546.14027
[13] Graham Ellis, Homological algebra programming, Computational group theory and the theory of groups, Contemp. Math., vol. 470, Amer. Math. Soc., Providence, RI, 2008, pp. 63 – 74. · Zbl 1155.20051 · doi:10.1090/conm/470/09186
[14] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. · Zbl 0888.11001
[15] Benjamin Fine, Algebraic theory of the Bianchi groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker, Inc., New York, 1989. · Zbl 0760.20014
[16] Dieter Flöge, Zur Struktur der \?\?\?\(_{2}\) über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255 – 279 (German). · Zbl 0498.20036 · doi:10.1007/BF01214824
[17] Dieter Flöge, Dissertation: Zur Struktur der PSL\( _ {2}\) über einigen imaginär-quadratischen Zahlringen, Ph.D. Thesis, 1980 (German). · Zbl 0482.20032
[18] Paul E. Gunnells, Modular symbols for \?-rank one groups and Voronoĭ reduction, J. Number Theory 75 (1999), no. 2, 198 – 219. · Zbl 0977.11023 · doi:10.1006/jnth.1998.2347
[19] Georges Humbert, Sur la réduction des formes d’Hermite dans un corps quadratique imaginaire, C. R. Acad. Sci. Paris 16 (1915), 189-196 (French). · JFM 45.0338.01
[20] Pierre Julg and Gennadi Kasparov, Operator \?-theory for the group \?\?(\?,1), J. Reine Angew. Math. 463 (1995), 99 – 152. · Zbl 0819.19004
[21] Felix Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann. 9 (1875), no. 2, 183 – 208 (German). · JFM 07.0053.02 · doi:10.1007/BF01443373
[22] Mark Lingham, Modular forms and elliptic curves over imaginary quadratic fields, Ph.D. Thesis, 2005.
[23] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. · Zbl 1025.57001
[24] Eduardo R. Mendoza, Cohomology of \?\?\?\(_{2}\) over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], 128, Universität Bonn, Mathematisches Institut, Bonn, 1979. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979.
[25] H. Poincaré, Mémoire, Acta Math. 3 (1883), no. 1, 49 – 92 (French). Les groupes kleinéens. · JFM 15.0348.02 · doi:10.1007/BF02422441
[26] Alexander D. Rahm, Bianchi.gp, Open source program (GNU general public license), 2010. Available at http://tel.archives-ouvertes.fr/tel-00526976/, this program computes a fundamental domain for the Bianchi groups in hyperbolic 3-space, the associated quotient space and essential information about the group homology of the Bianchi groups.
[27] Alexander D. Rahm and Mathias Fuchs, The integral homology of \?\?\?\(_{2}\) of imaginary quadratic integers with nontrivial class group, J. Pure Appl. Algebra 215 (2011), no. 6, 1443 – 1472. · Zbl 1268.11072 · doi:10.1016/j.jpaa.2010.09.005
[28] Alexander D. Rahm, (Co)homologies and \( {K}\)-theory of Bianchi groups using computational geometric models, Ph.D. Thesis, Institut Fourier, Université de Grenoble et Universität Göttingen, soutenue le 15 octobre 2010. http://tel.archives-ouvertes.fr/tel-00526976/. · Zbl 1228.20036
[29] John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. · Zbl 1106.51009
[30] Rubén Sánchez-García, Bredon homology and equivariant \?-homology of \?\?(3,\Bbb Z), J. Pure Appl. Algebra 212 (2008), no. 5, 1046 – 1059. · Zbl 1145.19005 · doi:10.1016/j.jpaa.2007.07.019
[31] Joachim Schwermer and Karen Vogtmann, The integral homology of \?\?\(_{2}\) and \?\?\?\(_{2}\) of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573 – 598. · Zbl 0545.20031 · doi:10.1007/BF02564653
[32] Mehmet Haluk Şengün, On the integral cohomology of Bianchi groups, Exp. Math. 20 (2011), no. 4, 487 – 505. · Zbl 1269.22007 · doi:10.1080/10586458.2011.594671
[33] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1 – 77 (1971). · Zbl 0221.20060 · doi:10.1016/0001-8708(71)90027-2
[34] Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399 – 419. · Zbl 0553.20023 · doi:10.1007/BF01455567
[35] C. T. C. Wall, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961), 251 – 255. · Zbl 0106.24903
[36] Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385 – 396. · Zbl 1257.11037 · doi:10.1007/978-3-642-14518-6_30
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.