×

Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations. (English) Zbl 1349.76186

Summary: Modern least squares finite element method (LSFEM) has advantage over mixed finite element method for non-self-adjoint problem like Navier-Stokes equations, but has problem to be norm equivalent and mass conservative when using C0 type basis. In this paper, LSFEM with non-uniform B-splines (NURBS) is proposed for Navier-Stokes equations. High order continuity NURBS is used to construct the finite-dimensional spaces for both velocity and pressure. Variational form is derived from the governing equations with primitive variables and the DOFs due to additional variables are not necessary. There is a novel \(k\)-refinement which has spectral convergence of least squares functional. The method also has same advantages as isogeometric analysis like automatic mesh generation and exact geometry representation. Several benchmark problems are solved using the proposed method. The results agree well with the benchmark solutions available in literature. The results also show good performance in mass conservation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

GeoPDEs
Full Text: DOI

References:

[1] Jiang, B. N., The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics (1998), Springer: Springer Berlin · Zbl 0904.76003
[2] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[3] Bochev, P. B.; Gunzburger, M. D., Least-Squares Finite Element Methods (2009), Springer: Springer New York · Zbl 1168.65067
[4] Bochev, P. B., Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 34, 1817-1844 (1997) · Zbl 0901.76030
[5] Bochev, P. B.; Gunzburger, M. D., Finite element methods of least-squares type, SIAM Rev., 40, 789-837 (1998) · Zbl 0914.65108
[6] Jiang, B. N., A least-squares finite-element method for incompressible Navier-Stokes problems, Int. J. Numer. Methods Fluids, 14, 843-859 (1992) · Zbl 0753.76097
[7] Bochev, P. B.; Lai, J.; Olson, L., A locally conservative, discontinuous least-squares finite element method for the Stokes equations, Int. J. Numer. Methods Fluids, 68, 782-804 (2012) · Zbl 1342.76072
[8] Pontaza, J. P.; Reddy, J. N., Least-squares finite element formulations for viscous incompressible and compressible fluid flows, Comput. Methods Appl. Mech. Eng., 195, 2454-2494 (2006) · Zbl 1178.76237
[9] Pontaza, J. P., A least-squares finite element formulation for unsteady incompressible flows with improved velocity-pressure coupling, J. Comput. Phys., 217, 563-588 (2006) · Zbl 1142.76033
[10] Ozcelikkale, A.; Sert, C., Least-squares spectral element solution of incompressible Navier-Stokes equations with adaptive refinement, J. Comput. Phys., 231, 3755-3769 (2012) · Zbl 1402.76090
[11] Prabhakar, V.; Reddy, J. N., A stress-based least-squares finite-element model for incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 54, 1369-1385 (2007) · Zbl 1116.76057
[12] Bochev, P. B.; Gunzburger, M. D., Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations, Comput. Methods Appl. Mech. Eng., 126, 267-287 (1995) · Zbl 1067.76562
[13] Cai, Z.; Manteuffel, T. A.; McCormick, S. F., First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34, 1727-1741 (1997) · Zbl 0901.76052
[14] Bochev, P. B.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F., Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal., 35, 990-1009 (1998) · Zbl 0910.76032
[15] Bochev, P. B.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F., Analysis of velocity-flux least-squares principles for the Navier-Stokes equations: Part II, SIAM J. Numer. Anal., 36, 1125-1144 (1999) · Zbl 0960.76044
[16] Wei, F.; Westerdale, J.; McMahon, E. M.; Belohlavek, M.; Heys, J. J., Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data, Comput. Math. Methods Med. (2012), M. Article ID 371315, 9 pages · Zbl 1233.92011
[17] Bochev, P. B., Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations, Numer. Methods Partial Differ. Equ., 15, 237-256 (1999) · Zbl 0921.76102
[18] Bramble, J. H.; Pasciak, J. E., Least-squares methods for Stokes equations based on a discrete minus one inner product, J. Comput. Appl. Math., 74, 155-173 (1996) · Zbl 0867.65055
[19] Lee, E.; Manteuffel, T. A., \( \text{FOSLL}^\ast\) method for the eddy current problem with three-dimensional edge singularities, SIAM J. Numer. Anal., 45, 787-809 (2007) · Zbl 1137.78342
[20] Manteuffe, T. A.; McCormick, S. F.; Ruge, J.; Schmidt, J. G., First-order system \(\text{LL}^\ast (\text{FOSLL}^\ast )\) for general scalar elliptic problems in the plane, SIAM J. Numer. Anal., 43, 2098-2120 (2005) · Zbl 1103.65117
[21] Cai, Z.; Manteuffe, T. A.; McCormick, S. F.; Ruge, J., First-order system LL \(( \text{FOSLL}^\ast )\): Scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39, 1418-1445 (2001) · Zbl 1008.65085
[22] Farin, G. E., Curves and Surfaces for CAGD: A Practical Guide (2002), Morgan Kaufmann Pub
[23] De Boor, C., A Practical Guide to Splines (2001), Springer: Springer Berlin · Zbl 0987.65015
[24] Piegl, L. A.; Tiller, W., The NURBS Book (1997), Springer: Springer New York · Zbl 0868.68106
[25] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195 (2005) · Zbl 1151.74419
[26] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley: Wiley Chichester · Zbl 1378.65009
[27] da Veiga, L. B.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for h-p-k-refinement in isogeometric analysis, Numer. Math., 118, 271-305 (2011) · Zbl 1222.41010
[28] Evans, J. A.; Bazilevs, Y.; Babuska, I.; Hughes, T. J.R., n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Eng., 198, 1726-1741 (2009) · Zbl 1227.65093
[29] Payette, G. S.; Reddy, J. N., On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems, J. Comput. Phys., 230, 3589-3613 (2011) · Zbl 1218.65130
[30] Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics (2002), Wiley: Wiley New York
[31] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Eng., 199, 229-263 (2010) · Zbl 1227.74123
[32] de Falco, C.; Reali, A.; Vazquez, R., GeoPDEs: A research tool for isogeometric analysis of PDEs, Adv. Eng. Softw., 42, 1020-1034 (2011) · Zbl 1246.35010
[33] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids, 27, 421-433 (1998) · Zbl 0964.76066
[34] Bruneau, C. H.; Saad, M., The 2D lid-driven cavity problem revisited, Comput. Fluids, 35, 326-348 (2006) · Zbl 1099.76043
[35] Gartling, D. K., A test problem for outflow boundary conditions—flow over a backward-facing step, Int. J. Numer. Methods Fluids, 11, 953-967 (1990)
[36] Taira, K.; Colonius, T., The immersed boundary method: A projection approach, J. Comput. Phys., 225, 2118-2137 (2007) · Zbl 1343.76027
[37] Gautier, R.; Biau, D.; Lamballais, E., A reference solution of the flow over a circular cylinder at \(\text{Re} = 40\), Comput. Fluids, 75, 103-111 (2013) · Zbl 1277.76067
[38] Grove, A. S.; Shair, F. H.; Petersen, E. E.; Acrivos, A., An experimental investigation of the steady separated flow past a circular cylinder, J. Fluid Mech., 19, 60-80 (1964) · Zbl 0117.42506
[39] Chang, C. L.; Nelson, J. J., Least-squares finite element method for the Stokes problem with zero residual of mass conservation, SIAM J. Numer. Anal., 34, 480-489 (1997) · Zbl 0890.76036
[40] Proot, M. M.J.; Gerritsma, M. I., Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem, J. Sci. Comput., 27, 389-401 (2006) · Zbl 1100.76049
[41] Kattelans, T.; Heinrichs, W., Conservation of mass and momentum of the least-squares spectral collocation scheme for the Stokes problem, J. Comput. Phys., 228, 4649-4664 (2009) · Zbl 1166.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.