×

Least-squares methods for Stokes equations based on a discrete minus one inner product. (English) Zbl 0867.65055

The purpose of this paper is to develop and analyze least-squares approximations for Stokes and elasticity problems. The major advantage of the least-squares formulation is that it does not require that the classical Ladyzhenskaya-Babuska-Brezzi (LBB) condition be satisfied. Two methods are provided. The first is posed in terms of the velocity-pressure pair without the introduction of additional variables. The second adds a vorticity variable. In both cases, least-squares functionals are provided which involve a discrete inner product which is related to the inner product in \(H^1(\Omega)\) (the Sobolev space of order minus one in \(\Omega)\).
The use of such inner products (applied to second problems) was proposed in an earlier paper by J. H. Bramble, R. D. Lazarov and J. E. Pasciak [A least-squares approach based on a direct minus one inner product for first order systems, Brookhaven Nat. Laboratory Rep. BNL-60624 (1994)].

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F35 Numerical computation of matrix norms, conditioning, scaling
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
35J25 Boundary value problems for second-order elliptic equations
76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Axelsson, O., A generalized conjugate gradient, least squares method, Numer. Math., 51, 209-228 (1987) · Zbl 0596.65014
[2] Babuška, I., On the Schwarz algorithm in the theory of differential equations of mathematical physics, Tchecosl. Math. J., 8, 328-342 (1958), (in Russian)
[3] (Birkhoff, G.; Schoenstadt, A., Elliptic Problem Solvers II (1984), Academic Press: Academic Press New York) · Zbl 0557.00009
[4] Bochev, P. B.; Gunzburger, M. D., Accuracy of least-squares methods for the Navier-Stokes equations, Comput. Fluids, 22, 549-563 (1993) · Zbl 0779.76039
[5] Bochev, P. B.; Gunzburger, M. D., Analysis of least-squares finite elements methods for the Stokes equations, Math. Comp., 63, 479-505 (1994) · Zbl 0816.65082
[6] Bramble, J. H., Multigrid Methods, (Pitman Research Notes in Mathematics Series (1993), Longman Scientific & Technical: Longman Scientific & Technical London), Copublished with Wiley, New York · Zbl 0186.17302
[7] Bramble, J. H., Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory, Math. Comp., 64, 1359-1366 (1995) · Zbl 0849.65086
[8] Bramble, J. H.; Pasciak, J. E., New convergence estimates for multigrid algorithms, Math. Comp., 49, 311-329 (1987) · Zbl 0659.65098
[9] Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50, 1-17 (1988) · Zbl 0643.65017
[10] Bramble, J. H.; Pasciak, J. E., New estimates for multigrid algorithms including the V-cycle, Math. Comp., 60, 447-471 (1993) · Zbl 0783.65081
[11] Bramble, J. H.; Pasciak, J. E.; Wang, J.; Xu, J., Convergence estimates for product iterative methods with applications to domain decompositions, Math. Comp., 57, 1-21 (1991) · Zbl 0754.65085
[12] Bramble, J. H.; Scott, R., Simultaneous approximations in scales of Banach spaces, Math. Comp., 32, 947-954 (1978) · Zbl 0404.41005
[13] Bramble, J. H.; Lazarov, R. D.; Pasciak, J. E., A least-squares approach based on a discrete minus one inner product for first order systems, Brookhaven National Laboratory Report BNL-60624 (1994)
[14] Brenner, S. C.; Scott, L. R., The mathematical Theory of Finite Element Methods (1994), Springer: Springer New York · Zbl 0804.65101
[15] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising form Lagrange multipliers, ((1974), R.A.I.R.O.), 129-151 · Zbl 0338.90047
[16] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[17] (Chan, T. F.; Glowinski, R.; Periaux, J.; Widlund, O. B., Third Internat. Symp. on Domain Decomposition Methods for Partial Differential Equations (1990), SIAM: SIAM Philadelphia, PA)
[18] (Chan, T.; Glowinski, R.; Periaux, J.; Widlund, O. B., Domain Decomposition Methods (1989), SIAM: SIAM Philadelphia, PA) · Zbl 0675.00021
[19] Chen, T. F., On the least-squares approximations to compressible flow problems, Numer. Methods PDE’s, 2, 207-228 (1986) · Zbl 0631.76082
[20] Chen, T. F.; Fix, G. J., Least-squares finite element simulation of transonic flows, Appl. Numer. Math., 2, 399-408 (1986) · Zbl 0601.76071
[21] Dryja, M.; Widlund, O., An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report. Technical Report, Courant Institute of Mathematical Sciences, 339 (1987)
[22] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, (Lecture Notes in Math., Vol. 749 (1981), Springer: Springer New York) · Zbl 0396.65070
[23] (Glowinski, R.; Golub, G. H.; Meurant, G. A.; Periaux, J., First Internat. Symp. on Domain Decomposition Methods for Partial Differential Equations (1988), SIAM: SIAM Philadelphia, PA)
[24] (Glowinski, R.; Kuznetzov, Y. A.; Meurant, G.; Periaux, J., Fourth Internat. Symp. on Domain Decomposition Methods for Partial Differential Equations (1991), SIAM: SIAM Philadelphia, PA)
[25] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman Boston · Zbl 0695.35060
[26] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics. VII. The Stokes problems with various well-posed boundary conditions: symmetric formulation that converges for all velocity pressure spaces, Comput. Methods. Appl. Mech. Eng., 65, 85-96 (1987) · Zbl 0635.76067
[27] Hunhes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Eng., 59, 85-99 (1986) · Zbl 0622.76077
[28] Jiang, B. N.; Chang, C., Least-squares finite elements for the Stokes problem, Comput. Mech. Eng., 81, 13-37 (1990) · Zbl 0714.76058
[29] Ladyzhenskaya, O. A., The Methematical Theory of Viscous Incompressible Flows (1969), Gordon and Breach: Gordon and Breach London · Zbl 0184.52603
[30] Nečas, J., Les Méthodes Directes en Théorie des Équations Elliptiques (1967), Academia: Academia Prague · Zbl 1225.35003
[31] Bjørstad, P. E.; Widlund, O. B., Solving elliptic problems on regions partitioned into substructures, (Birkhoff, G.; Schoenstadt, A., Elliptic problem Solvers II (1984), Academic Press: Academic Press New York), 245-256 · Zbl 0561.65078
[32] Rusten, T.; Winther, R., A preconditoned iterative methods for saddle point problems, SIAM J. Matrix Anal. Appl., 13, 489-512 (1992)
[33] Temam, R., Navier-Stokes Equations (1977), North-Holland: North-Holland New York · Zbl 0335.35077
[34] Vassilevski, P., Hybrid V-cycle algebraic multilevel method for visco-elastic fluid flow problems (1987)
[35] Wang, K. C.; Carrey, G. F., A least-squares method for visco-elastic fluid flow problems, Internat. J. Numer. Methods Fluids, 17, 943-953 (1993) · Zbl 0798.76044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.