×

Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture. (English) Zbl 1471.35284

Summary: Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulon with unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

MSC:

35Q93 PDEs in connection with control and optimization
35R10 Partial functional-differential equations
49N90 Applications of optimal control and differential games
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] Dietz, D.; Zeng, A. P., Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium, Bioprocess Biosyst Eng, 37, 225-233 (2014)
[2] Metsoviti, M.; Paraskevaidi, K.; Koutinas, A.; Zeng, A. P.; Papanikolaou, S., Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated klebsiella oxytoca strain growing on biodiesel-derived glycerol based media, Process Biochem, 47, 12, 1872-1882 (2012)
[3] Nakamura, C. E.; Whited, G. M., Metabolic engineering for the microbial production of 1,3-propanediol, Curr Opin Biotechnol, 14, 15, 454-459 (2003)
[4] Metsoviti, M.; Zeng, A. P.; Koutinas, A.; Paraskevaidi, K., Enhanced 1,3-propanediiol production by a newly isolated citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses, J Biotechnol, 163, 408-418 (2013)
[5] Zeng, A. P.; Biebl, H., Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends, Adv Biochem Eng Biotechnol, 74, 239-259 (2002)
[6] Ashoori, A.; Moshiri, B.; Khaki-Sedigh, A.; Bakhtiari, M. R., Optimal control of a nonlinear FED-batch fermentation process using model predictive approach, J Process Contr, 19, 7, 1162-1173 (2009)
[7] Wang, L.; Lin, Q.; Loxton, R.; Teo, K. L.; Cheng, G., Optimal 1, 3-propanediol production: Exploring the trade-off between process yield and feeding rate variation, J Process Contr, 32, 1-9 (2015)
[8] Saxena, R. K.; Anand, P.; Saran, S.; Isar, J., Microbial production of 1,3-propanediol: Recent developments and emerging opportunities, Biotechnol Adv, 27, 895-913 (2009)
[9] Zeng, A. P., A kinetic model for product formation of microbial and mammalian cells, Biotechnol Bioeng, 46, 4, 314-324 (1995)
[10] Sun, Y. Q.; Qi, W. T.; Teng, H.; Xiu, Z. L.; Zeng, A. P., Mathematica modeling of glycerol fermentation by klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane, Biochem Eng J, 38, 22-32 (2008)
[11] Shao, J.; Zhang, X.; Feng, E.; Xiu, Z., Experimental design suboptimization for the enzyme-catalyticnonlinear time-delay system in microbial batch culture, J Process Contr, 24, 1740-1746 (2014)
[12] Cheng, G. M.; Wang, L.; Loxton, R. C.; Lin, Q., Robust optimal control of a microbial batch culture process, J Optim Theory Appl, 167, 1, 342-362 (2015) · Zbl 1326.49065
[13] Jiang, Z. G.; Yuan, J. L.; Feng, E. M., Robust identication and its properties of nonlinear bilevel multi-stage dynamic system, Appl Math Comput, 219, 12, 6979-6985 (2013) · Zbl 1284.93073
[14] Yin, H.; Yuan, J. L.; Zhang, X.; Xie, J.; Feng, E.; Xiu, Z., Modeling and parameter identification for a nonlinear multi-stage system for DHA regulon in batch culture, Appl Math Modell, 40, 1, 468-484 (2016) · Zbl 1443.92041
[15] Yuan, J. L.; Zhang, X.; Zhu, X.; Yin, H. C.; Feng, E. M.; Xiu, Z. L., Identification and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch culture, Comp Appl Math, 34, 957-978 (2015) · Zbl 1332.49040
[16] Wang, J.; Ye, J. X.; Yin, H. C.; Feng, E. M.; Wang, L., Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol, J Comput Appl Math, 236, 9, 2268-2276 (2012) · Zbl 1233.92025
[17] Yuan, J. L.; Zhu, X.; Zhang, X.; Yin, H. C.; Feng, E. M.; Xiu, Z. L., Robust identification of enzymatic nonlinear dynamical systems for 1,3-propanediol transport mechanisms in microbial batch culture, Appl Math Comput, 232, 150-163 (2014) · Zbl 1410.92008
[18] Yuan, J. L.; Zhang, X.; Zhu, X.; Feng, E. M.; Yin, H. C.; Xiu, Z. L., Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture, Commun Nonlinear Sci Numer Simulat, 19, 16, 2088-2103 (2014) · Zbl 1457.92065
[19] Wang, Y.; Wang, L.; Zhao, Y.; Song, A.; Ma, Y., A stochastic model for microbial fermentation process under gaussian white noise environment, Numer Algebra Control Optim, 5, 4, 381-392 (2015) · Zbl 1329.60200
[20] Zhu, X.; Feng, E. M., Joint estimation in batch culture by using unscented Kalman filter, Biotechnol Bioproc Engineering, 17, 6, 1238-1243 (2012)
[21] Wang, J.; Ye, J.; Feng, E. M.; Yin, H.; Xiu, Z., Modeling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol, Math Comput Model, 54, 618-624 (2011) · Zbl 1225.37110
[22] Tong, I. T.; Liao, H. H.; Cameron, D. C., 1,3-propanediol production by escherichia coli expressing genes from the klebsiella pneumoniae dha regulon, Appl Environ Microb, 57, 12, 3541-3546 (1991)
[23] Sun, J.; Heuvel, J.; Soucaille, P.; Qu, Y.; Zeng, A. P., Comparative genomic analysis of dha regulon and related genes for anaerobic gelycerol metabolism in bacteria, Biotechnol Progr, 19, 263-272 (2003)
[24] Tong, I. T.; Cameron, D. C., Enhancement of 1,3-propanediol production by cofermentation in escherichia coli expressing klebsiella pneumoniae dha regulon genes, Appl Biochem Biotech, 34-35, 149-159 (1992)
[25] Sun, Y. Q.; Ye, J. X.; Mu, X. J.; Teng, H.; Feng, E. M.; Xiu, Z. L., Nonlinear mathematical simulation and analysis of dha regulon for glycerol metabolism in klebsiella pneumoniae, Chin J Chem Eng, 20, 5, 958-970 (2012)
[26] Yuan, J. L.; Zhang, X.; Zhu, X.; Feng, E.; Yin, H.; Xiu, Z., Pathway identification using parallel optimization for a nonlinear hybrid system in batch culture, Nonlinear Anal: Hybrid Syst, 15, 112-131 (2015) · Zbl 1370.92063
[27] Silva, G. J.; Datta, A.; Bhattacharyya, S. P., PID controllers for time-delay systems (2007), Springer
[28] Denis-Vidal, L.; Jauberthie, C.; Joly-Blanchard, G., Identifiability of a nonlinear delayed-differential aerospace model, IEEE Trans Automat Control, 51, 154-158 (2006) · Zbl 1366.93674
[29] Yan, P.; Ozbay, H., Stability analysis of switched time delay systems, SIAM J Control Optim, 47, 2, 936-949 (2008) · Zbl 1157.93462
[30] Anguelova, M.; Wennberg, B., State elimination and identifiability of the delay parameter for nonlinear time-delay systems, Automatica, 44, 1373-1378 (2008) · Zbl 1283.93084
[31] Chai, Q. Q.; Loxton, R.; Teo, K. L.; Yang, C., A class of optimal state-delay control problems, Nonlinear Anal Real, 14, 1536-1550 (2013) · Zbl 1263.93096
[32] Chai, Q. Q.; Loxton, R.; Teo, K. L.; Yang, C., A unified parameter identification method for nonlinear time-delay systems, J Ind Manag Optim, 9, 2, 471-486 (2013) · Zbl 1274.93064
[33] Chai, Q. Q.; Loxton, R.; Teo, K. L.; Yang, C., Time-delay estimation for nonlinear systems with piecewise-constant input, Appl Math Comput, 219, 17, 9543-9560 (2013) · Zbl 1287.93102
[34] Liu, C. Y.; Loxton, R.; Teo, K. L., Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, J Optim Theory Appl, 163, 3, 957-988 (2014) · Zbl 1304.49063
[35] Wu, Z. G.; Park, J. H.; Su, H.; Chu, J., Stochastic stability analysis of piecewise homogeneous markovian jump neural networks with mixed time-delays, J Frankl Inst, 349, 2136-2150 (2012) · Zbl 1300.93179
[36] Wu, Z. G.; Park, J. H.; Su, H.; Chu, J., Passivity analysis of Markov jump neural networks with mixed time-delays and piecewise-constant transition rates, Nonlinear Anal Real, 13, 2423-2431 (2012) · Zbl 1260.60172
[37] MacDonald, N., Time-lags in biological models. Time-lags in biological models, Lecture Notes in Biomathematics, 27 (1979), Springer: Springer Berlin
[38] Wu, Z. G.; Park, J. H.; Su, H.; Chu, J., Stochastic stability analysis for discrete-time singular markov jump systems with time-varying delay and piecewiseconstant transition probabilities, J Franklin Inst, 349, 2889-2902 (2012) · Zbl 1264.93267
[39] Liu, C. Y.; Loxton, R.; Teo, K. L., Optimal parameter selection for nonlinear multistage systems with time-delays, Comput Optim Appl, 59, 1-2, 285-306 (2014) · Zbl 1326.90099
[40] Loxton, R.; Teo, K. L.; Volker, R., An optimization approach to state-delay identification, IEEE Trans Automat Contr, 55, 2113-2119 (2010) · Zbl 1368.93126
[41] Kitano, H., Biological robustness, Nat Rev Genet, 5, 11, 826-837 (2004)
[42] Perc, M.; Marhl, M., Sensitivity and flexibility of regular and chaotic calcium oscillations, Biophys Chem, 104, 2, 509-522 (2003)
[43] Perc, M.; Marhl, M., Noise enhances robustness of intracellular ca \({}^{2 +}\) oscillations, Phys Lett A, 316, 5, 304-310 (2003)
[44] Stelling, J.; Sauer, U.; Szallasi, Z.; Doyle, F. J.; Doyle, J., Robustness of cellular functions, Cell, 118, 6, 675-685 (2004)
[45] Kitano, H., Towards a theory of biological robustness, Mol Syst Biol, 3, 1-7 (2007)
[46] Barkai, N.; Leibler, S., Robustness in simple biochemical networks, Nature, 6636, 387, 913-917 (1997)
[47] Rehbock, V.; Teo, K. L.; Jennings, L. S., A computational procedure for suboptimal robust controls, Dyn Control, 2, 331-348 (1992) · Zbl 0765.49017
[48] Wei, W.; Teo, K. L.; Zhan, Z., A numerical method for an optimal control problem with minimum sensitivity on coefficient variation, Appl Math Comput, 218, 1180-1190 (2011) · Zbl 1229.65107
[49] Loxton, R. C.; Teo, K. L.; Rehbock, V., Robust suboptimal control of nonlinear systems, Appl Math Comput, 217, 6566-6576 (2011) · Zbl 1209.93041
[50] Malanowski, K., Sensitivity analysis for parametric optimal control of semilinear parabolic equations, J Convex Analy, 9, 543-561 (2002) · Zbl 1030.49028
[51] Yuan, J. L.; Wang, L.; Zhang, X.; Feng, E.; Yin, H.; Xiu, Z., Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays, J Glob Optim, 62, 791-810 (2015) · Zbl 1330.90143
[52] Wang, L., Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness, Bioproc biosyst eng, 36, 4, 433-441 (2013)
[53] Teo, K. L.; Goh, C. J.; Wong, K. H., A unified computational approach to optimal control problems, Long Scientific Technical (1991) · Zbl 0747.49005
[54] Polak, E., Optimization algorithms and consistent approximations (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0899.90148
[55] Ge, R. P., A filled function method for finding a global minimizer of a function of several variables, Math Program, 46, 191-204 (1990) · Zbl 0694.90083
[56] Wei, F.; Wang, Y.; Lin, H., A new filled function method with two parameters for global optimization, J Optim Theory Appl, 163, 510-527 (2014) · Zbl 1305.65155
[57] Lin, H.; Gao, Y.; Wang, Y., A continuously differentiable filled function method for global optimization, Numer Algorithms, 66, 511-523 (2014) · Zbl 1296.65089
[58] Michaels, P.; Zubik-Kowal, B., Parallel computations and numerical simulations for nonlinear systems of Volterra integro-differential equations, Commun Nonlinear Sci Numer Simulat, 17, 7, 3022-3030 (2012) · Zbl 1252.35269
[59] Ellermeyer, A.; Hendrix, J.; Ghoochan, N., A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria, J Theor Biol, 222, 485-494 (2003) · Zbl 1464.92153
[60] Sharma, R., Some more inequalities for arithmetic mean, harmonic mean and variance, J Math Inequal, 2, 1, 109-114 (2008)
[61] Nocedal, J.; Wright, S. J., Numerical optimization (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0930.65067
[62] Clarke, F. H.; Ledyaev, Y. S.; Stem, R. J.; Wolenski, P. R., Nonsmooth analysis and control theory, Graduate texts in mathematics, 178 (1998), Springer-Verlag: Springer-Verlag New York · Zbl 1047.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.